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Inhomogeneous Diophantine approximation

on curves with non-monotonic error function

In this paper we prove a convergent part of inhomogeneous Groshev type theo-
rem for non–degenerate curves in Euclidean space where an error function is not
necessarily monotonic. Our result naturally incorporates and generalizes the ho-
mogeneous measure theorem for non-degenerate curves. In particular, the method
of Inhomogeneous Transference Principle and Sprindzuk’s method of essential and
inessential domains are used in the proof.
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Introduction and Statements

In 1998 Kleinbock and Margulis [1] established the Baker – Sprindzuk conjecture con-

cerning homogeneous Diophantine approximation on manifolds. An inhomogeneous ver-

sion was then proved by Beresnevich and Velani [2]. The theory of inhomogeneous Dio-

phantine approximation on manifolds was started with the result of V. I. Bernik, D.

Dickinson and M. Dodson [3]. The significantly stronger Groshev type theory for dual

Diophantine approximation on manifolds is established in [4–6] for the homogeneous case

and in [7] for the inhomogeneous case. In all of these results the error function Ψ was

assumed to be monotonic. In 2005 Beresnevich [8] showed that the condition that Ψ is

monotonic could be removed for the Veronese curve Vn = = {(x,x2, ... ,xn) :x∈R}; he
conjectured that the result should also hold for any non–degenerate curve in Euclidean

space. This was proved in [9].

Our main result below is a convergent part of Groshev type theorem for inhomoge-

neous Diophantine approximation on non–degenerate curves in Euclidean space without

monotonicity condition. First some notation is needed. Let Fn be the set of functions

anfn(x) + . . .+ a1f1(x) + a0,
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with n≥ 2, a=(a0, . .. ,an)∈Zn+1 \{0}, and f1,f2, . .. ,fn be C(n) functions from R→R
with non–vanishing Wronskian wr(f ′1, ... ,f

′
n)(x) almost everywhere. For F ∈Fn define

the height of F as H =H(F ) = max
0≤j≤n

|aj |. The Lebesgue measure of a measurable set

A⊂R is denoted by µ(A).

Define a real valued function Ψ:R+→R+ and a function θ :R→R. Denote by Ln,θ(Ψ)

the set of x∈R such that the inequality

|F (x) + θ(x)| < Ψ(H(F )) (1)

has infinitely many solutions F ∈Fn.

The main result of this paper is the following statement.

Theorem 1. Let n≥2 and θ :R→R be a function such that θ∈C(n). Let Ψ:R+→R+

be an arbitrary function (not necessarily monotonic) such that the sum
∞∑
h=1

hn−1Ψ(h)

converges. Then µ(Ln,θ(Ψ))=0.

Throughout, the Vinogradov symbol ≪ is used so that if K and M are positive real

numbers then K≪M means that there exists C>0 such that K≤CM . If K≪M and

M≪K we write K≍M .

1 Proof of Theorem 1

First note that since
∞∑
h=1

hn−1Ψ(h) converges, hn−1Ψ(h) tends to 0 as h→∞. There-

fore,
Ψ(h) = o(h−n+1).

The set S={x∈R :wr(f ′1,.. .,f
′
n)(x)=0} is closed and of zero measure. Thus R\S is open

and therefore an Fσ set. We can write R\S=
∞⋃
k=1

[ak,bk]. It is therefore sufficient to prove

the theorem for a closed interval I. Also, since |wr(f ′1, .. . ,f ′n)(x)| ≠ 0 almost everywhere

we will assume from now on, without loss of generality that

|wr(f ′1, . . . , f ′n)(x)| ≥ ε = ε(I) > 0 (2)

“for all x in such an interval I”. Since the functions f =(f1, ... ,fn) and θ are C(n) then

we can assume that there exists a constant K0=K0(I,f ,θ) such that

max
0≤i≤n

sup
x∈I

|f (i)(x)| ≤ K0 and max
0≤i≤n

sup
x∈I

|θ(i)(x)| ≤ K0.

Lemma 1 [9]. If |wr(f ′1, . .. ,f ′n)(x)|≥ ε then |fi(x)f ′j(x)−f ′i(x)fj(x)|>
εγ2

2n+1n!Kn
0

for all

i, j in {1,. ..,n}.

From now on, it is therefore assumed without loss of generality that

|fi(x)f ′j(x)− f ′i(x)fj(x)| ≥ δ2 =
εγ2

2n+1n!Kn
0
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for all i,j∈{1,. ..,n} with i ̸= j.
For the proof of main result we will need some properties of the functions F ∈Fn. The

following lemma is a modification and combination of Lemmas 2 and 3 of Pyartli, [10].

We are assuming that (2) holds.

Lemma 2 (Borel –Cantelli). Let Aj be a family of Lebesgue measurable sets and let

A∞ be the set of points x∈R which lie in infinitely many Aj . If
∞∑
j=1

µ(Aj)<∞ then

µ(A∞)=0.

1.1 The case of small derivative

Proposition 1. Let n≥2. Then, µ(L1(n,θ))=0.

P r o o f p r o p o s i t i o n 1. First L1(n,θ) is written as a lim sup set. For F ∈Fn

define

B(F ) = {x ∈ I : |F (x) + θ(x)| < H(F )−n+1, |F ′(x) + θ′(x)| < H(F )−v}.

Then

L1(n, θ) =

∞⋂
N=1

∞⋃
t=N

⋃
F∈Ft

n

B(F ),

where
F t

n := {F ∈ Fn, 2
t ≤ H(F ) < 2t+1}.

To prove the proposition it will be shown that a larger set (containing L1(n,θ)) has

measure zero and then the Inhomogeneous Transference Principle proved in [2] will be

used. The Inhomogeneous Transference Principle allows the transfer of zero measure

statements for homogeneous lim sup sets to inhomogeneous lim sup sets and is described

below.

Inhomogeneous Transference Principle. Most of this section is adapted from [2,

Case B]. For our purposes the two countable indexing sets T and A from [2] are the sets

T=N∪{0} and A=Fn. Throughout, J denotes a finite open interval in R with closure

denoted by J̄ . Let H and I be two maps from (N∪{0})×Fn×R+ into the set of open

subsets of R such that

H(t, F, ϵ) = It
0(F, ϵ), I(t, F, ϵ) = It

θ(F, ϵ).

For the specific case considered in this article the sets It
0(F,ϵ) and It

θ(F,ϵ) are defined as

follows:

It
θ(F, ϵ) =

{
{x∈ I : |F (x)+θ(x)|<2t(−n+1)ϵ, |F ′(x)+θ′(x)|<2−tvϵ} if F ∈F t

n,

∅ else;

and

It
0(F, ϵ) =

{
{x∈ I : |F (x)|<2t(−n+1)ϵ, |F ′(x)|<2−tvϵ} if F ∈

⋃t+1
s=0Fs

n

∅ else.
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Let δ∈R and define the function ϕδ(t)=2δt. Also, define Φ= {ϕδ : 0≤ δ <v/2}. For
any ϕ∈Φ define

It
θ(ϕ) =

⋃
F∈Fn

It
θ(F, ϕ(t)) =

⋃
F∈Ft

n

It
θ(F, ϕ(t))

and denote by ΛI(ϕ) the limsup set

ΛI(ϕ) =

∞⋂
N=1

∞⋃
t=N

It
θ(ϕ).

Intersection Property: Let Φ denote a set of functions ϕ :N∪{0}→R+. The triple

(H,I,Φ) is said to satisfy the intersection property if for any ϕ∈Φ there exists ϕ∗ ∈Φ

such that for all but finitely many t∈N∪{0} and all distinct F,F̃ ∈Fn

It
θ(F, ϕ(t)) ∩ It

θ(F̃ , ϕ(t)) ⊂ It
0(ϕ

∗). (3)

Contracting Property: Let {kt}t∈N be a sequence of positive numbers such that∑
t∈N∪{0}

kt <∞. (4)

The measure µ is said to be contracting with respect to (I,Φ) if for any ϕ∈Φ there exists

ϕ+∈Φ such that for all but finitely many t and all F ∈Fn there exists a collection Ct,F

of balls B centred in J̄ satisfying the following three conditions:

J̄ ∩It
θ(F,ϕ(t))⊂

⋃
B∈Ct,F

B, (5)

J̄
⋂ ⋃

B∈Ct,F

B⊂It
θ(F,ϕ

+(t)),

µ(5B∩It
θ(F,ϕ(t)))≤ktµ(5B). (6)

We now state the theorem from [2].

Theorem 2 (Inhomogeneous Transference Principle). Suppose that (H,I,Φ) satisfies

the intersection property and that µ is contracting with respect to (I,Φ). If, for all ϕ∈Φ,

µ(ΛH(ϕ))=0 then for all ϕ∈Φ, µ(ΛI(ϕ))=0.

First the contracting and intersection properties are verified and then it will be shown

that µ(ΛH(ϕδ)) = 0. This will imply using the transference principle that ΛI(ϕδ) has

measure zero and further that µ(L1(n,d))=0 as required.

1.1.1 Verifying the intersection property

Let t∈N∪{0} and F,F̃ ∈Fn with F ̸= F̃ . Suppose that

x ∈ It
θ(F, ϕδ(t)) ∩ It

θ(F̃ , ϕδ(t)).

Then, the inequalities

|F (x)+θ(x)|<ϕδ(t)2t(−n+1) and |F̃ (x)+θ(x)|<ϕδ(t)2t(−n+1),

|F ′(x)+θ′(x)|<ϕδ(t)2−vt and |F̃ ′(x)+θ′(x)|<ϕδ(t)2−vt
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holds.

Let R(x)=(F (x)+θ(x))−(F̃ (x)+θ(x)). Then,

|R(x)| < 2ϕδ(t)2
t(−n+1) < ϕδ′(t)2

t(−n+1), |R′(x)| < 21−vtϕδ(t) < 2−vtϕδ′(t),

for all t> 1
v/2−δ and where ϕδ′ ∈Φ. Clearly R cannot be constant for n≥2 and t≥2, so

R∈
t+1⋃
s=0

Fs
n. Thus, x∈It

0(R,ϕδ′(t)) and (3) is satisfied with ϕ∗=ϕδ′ .

1.1.2 Verifying the contracting property

The following definition from [1] will be used.

Definition 1. Let C and α be positive numbers and f : I→R be a function defined on

the open interval I⊂R. Then f is called (C,α)–good on I if, for any open interval B⊂I
and any ϵ>0,

µ({x ∈ B : |f(x)| < ϵ sup
x∈B

|f(x)|}) ≤ Cϵαµ(B).

Several useful facts about (C,α)-good functions are listed below.

Lemma 3. ( [6, Lemma 3.1]) Let I⊂R and C,α>0 be given.

(i) If f is (C,α)-good on I then so is λf for any λ∈R.
(ii) If fi, i∈ I0, are (C,α)-good on I then so is supi∈I0 |fi|.
(iii) If f is (C,α)-good on I and c1≤ |f(x)|

|g(x)| ≤c2 for all x∈I, then g is (C(c2/c1)
α,α)-good

on I.

Lemma 4. [7, Corollary 3] Let U be an open subset of Rm, x0∈U and let f=(f1,.. .,fn):

U→Rn be n-nondegenerate at x0 for some n≥ 2. Let θ∈C(n)(U). Then there exists a

neighborhood V ⊂U of x0 and a positive constants C and H0 such that for any a∈Rn

satisfying |a|≥H0

(a) a0+a · f+θ is (C, 1
nm )-good on V for every a0∈R, and

(b) |∇(a · f+θ)| is (C, 1
m(n−1) )-good on V .

Here ∇ denotes the gradient operator. Note that in the case m= 1 the map f is

nondegenerate iff wr(f ′1,. ..,f
′
n)(x) ̸=0 almost everywhere.

Lemma 5. [7, Corollary 4] Let U,x0,f and θ be as in Lemma 4. Then for every suffi-

ciently small neighborhood V ⊂U of x0, there exists H0>1 such that

inf
(a,a0)∈Rn+1|a|≥H0

sup
x∈V

|a0 + a · f(x) + θ(x)| > 0.

Since Ft,F is a (C, 1n )-good on 5J for sufficiently large t it follows from (5)–(6), that

µ(It
θ(F, ϕδ(t)) ∩ 5B) ≤ µ

({
x ∈ 5B : Ft,F (x) ≤ 2−δ∗t sup

x∈5B
Ft,F (x)

})
≤ 2−

δ∗t
n Cµ(5B)

for sufficiently large t. This verifies (6) with kt := 2−
δ∗t
n C and it is easily seen that the

convergence condition (4) is fulfilled.
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1.2 The case of big derivative

Proposition 2. Let n≥2. Then, µ(L2(n,θ,Ψ))=0.

P r o o f. Let Fn(H) = {F ∈Fn : H(F ) =H}, then Fn =
∞⋃

H=1

Fn(H). Now consider

F ∈Fn(H) satisfying H−v≤|F ′(x)+θ′(x)|. For the remaining case we need the following.

The set of solutions of (1) in I consists of at most n intervals. Each of these intervals can

be further divided into subintervals on which F ′+θ′ is also monotonic (at most n−1 of

them). Each of these new intervals is finally further subdivided into intervals with respect

to the value of F ′(x)+θ′(x). Any interval on which |F ′(x)+θ′(x)|<H−v has already been

considered. For F ∈Fn(H), let Ij(F,θ) be one of the remaining intervals; thus, on Ij(F,θ),

F +θ and F ′+θ′ are monotonic and |F (x)+θ(x)|<Ψ(H(F )), H−v ≤|F ′(x)+θ′(x)| for
all x∈ Ij(F,θ). The number of Ij(F,θ) is clearly finite. Let Īj(F,θ) denote the closure of

Ij(F,θ) and αj,F denote a point in Īj(F,θ) such that

|F ′(αj,F ) + θ′(αj,F )| = min
x∈Īj(F )

|F ′(x) + θ′(x)|.

For convenience we will use Fθ to denote the function F (x)+θ(x).

Lemma 6. [10] Let a1,a2>0. Let ψ be an n-times continuously differentiable function

on (b1,b2) satisfying |ψ(n)(x)|≥a1 for all x∈ (b1,b2). Then

µ({x ∈ (b1, b2) : ψ(x) < a2}) ≤ c(n)(a2/a1)
1/n.

From Lemma 6 we have

µ(Ij(F, θ)) ≤ c(n)Ψ(H)|F ′
θ(αj,F )|−1. (7)

It follows from the choice of αj,F that H−v ≤|F ′
θ(αj,F )|.

Now we are ready to complete the proof of Theorem 1. The three remaining cases in

the proof concern different ranges for the size of F ′
θ(αj,F ).

Case I. For F ∈ Fn(H), let σ(Fθ) be the union of intervals Ij(F, θ) for which

|F ′
θ(αj)|≥c1H1/2. Hence, σ(Fθ) is the set of x∈I which satisfy |Fθ(x)|<Ψ(H) and x lies

in some interval Ij(F,θ) for which

|F ′
θ(αj,F )| ≥ c1H

1/2.

For every F ∈Fn(H) and every j, where αj,F ∈σ(Fθ), and some constant c2=c2(n) define

the set σ1,j(Fθ) of points x∈ I which satisfy

|x− αj,F | < c2|F ′
θ(αj,F )|−1

for αj,F ∈σ(Fθ). Let σ1(Fθ)=
⋃
j

σ1,j(Fθ). From (7), for H>H0(c2)

µ(σ(Fθ)) ≤ c(n)c−1
2 Ψ(H)µ(σ1(Fθ)).

For each j with αj,F ∈σ(Fθ) develop F as a Taylor series on σ1,j(Fθ) so that

Fθ(x) = Fθ(αj,F ) + F ′
θ(αj,F )(x− αj,F ) + F ′′

θ (ξ1)(x− αj,F )
2/2,
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where ξ1 is between x and αj,F . Estimate each term in the above equation to obtain

|Fθ(αj,F )|<Ψ(H)<c2, |F ′
θ(αj,F )(x−αj,F )|<c2,

|F ′′
θ (αj,F )(x−αj,F )

2|<2nK0H(c2|F ′
θ(αj,F )|−1)2=2nK0c

2
2c

−2
1 .

Case II. This time, for F ∈Fn(H) use σ(Fθ) to denote the union of intervals Ij(F,θ)

for which 1≤|F ′(αj,F )|<c1H1/2. Hence σ(Fθ) is the set of x∈ I which satisfy

|Fθ(x)| < Ψ(H),

and x lies in some Ij(F,θ) for which

1 ≤ |F ′
θ(αj,F )| < c1H

1/2.

Let σ2(Fθ)=
⋃
j

σ2,j(Fθ). It is readily verified that

µ(σ(Fθ)) ≤ c−1
3 c(n)HΨ(H)µ(σ2(Fθ)). (8)

First, the essential intervals are investigated. Summing the measure of essential in-

tervals gives ∑
F∈Fn,b1

(H)

∑
jσ2,j(Fθ) essential

µ(σ2,j(Fθ)) ≪ |I|.

From this, (8) and the fact that the number of vectors b1 is ≪Hn−2, we have∑
b1

∑
F∈Fn,b1

(H)

µ(σ(Fθ)) ≪ Hn−1Ψ(H)|I|.

Finally, we obtain ∞∑
H=1

∑
b1

∑
F∈Fn,b1

(H)

µ(σ(Fθ)) <∞.

Thus, by the Borel –Cantelli Lemma, the set of points x which belong to infinitely many

essential domains is of measure zero.

Case III. This is very similar to the previous case. For F ∈Fn(H) use σ(Fθ) to denote

the union of intervals Ij(F,θ) for which H−v ≤ |F ′
θ(αj,F )|< 1 with 0<v < 1/4. Hence

σ(Fθ) is the set of x∈ I which satisfy

|Fθ(x)| < Ψ(H),

and x lies in some Ij(F,θ) for which

H−v ≤ |F ′
θ(αj,F )| < 1.

Fix the vector b1 as above and define the following expansions of Ij(F,θ):

σ3,j(Fθ) :={x∈ I : dist(x,Ij(F,θ))<c4H−1|F ′(αj,F )|−1}, c4>c(n),

σ′
3,j(Fθ) :={x∈ I : dist(x,Ij(F,θ))<H−1+4v/3}.
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From this,

µ(σ(F )) ≤ c−1
4 c(n)µ(σ3(F ))HΨ(H), (9)

where σ3(Fθ)=
⋃
j

σ3,j(Fθ). It is clear that σ3,j(Fθ)⊂σ′
3,j(Fθ). Moreover, it is easy to see

that

σ3,j(Fθ) ⊂ σ′
3,i(F̃θ)

for any F̃ ∈Fn,b1(H) with σ3,i(F̃θ)∩σ3,j(Fθ) ̸=∅.
Summing the measures of the essential intervals σ3(Fθ) gives∑

F∈Fn,b1
(H)

∑
jσ3,j(Fθ)

µ(σ3,j(Fθ)) ≪ |I|. (10)

As #b1≪Hn−2, from (9) and (10), we have

∞∑
H=1

∑
b1

∑
F∈Fn,b1

(H)

µ(σ(Fθ)) ≪
∞∑

H=1

Hn−1Ψ(H)|I| <∞.

By the Borel –Cantelli Lemma, the set of those x belonging to infinitely many essential

intervals has zero measure.

The proof of the theorem is therefore complete.
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Figure 1: Example of a picture.

Link to the picture 1 — 1.
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АННОТАЦИЯ

В данной статье доказывается неоднородный аналог теоремы типа Гро-
шева в случае сходимости для невырожденных кривых в евклидовом
пространстве, когда функция аппроксимации является не обязательно
монотонной. Наш результат естественно включает в себя и обобщает
теорему для меры множества точек невырожденных кривых в однород-
ном случае. В доказательстве используются неоднородный метод пере-
носа и метод существенных и несущественных областей Спринджука.

Ключевые слова: неоднородные диофантовы приближения, теорема Хин-
чина, невырожденная кривая.


	Proof of Theorem 1
	The case of small derivative
	Verifying the intersection property
	Verifying the contracting property

	The case of big derivative

	References

