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Inhomogeneous Diophantine approximation
on curves with non-monotonic error function

In this paper we prove a convergent part of inhomogeneous Groshev type theo-
rem for non—degenerate curves in Euclidean space where an error function is not
necessarily monotonic. Our result naturally incorporates and generalizes the ho-
mogeneous measure theorem for non-degenerate curves. In particular, the method
of Inhomogeneous Transference Principle and Sprindzuk’s method of essential and
inessential domains are used in the proof.

Key words: Inhomogeneous Diophantine approximation, Khintchine theorem, non-
degenerate curve.

Introduction and Statements

In 1998 Kleinbock and Margulis [1] established the Baker—Sprindzuk conjecture concern-
ing homogeneous Diophantine approximation on manifolds. An inhomogeneous version
was then proved by Beresnevich and Velani [2]. The theory of inhomogeneous Diophan-
tine approximation on manifolds was started with the result of V. I. Bernik, D. Dickinson
and M. Dodson [3]. The significantly stronger Groshev type theory for dual Diophantine
approximation on manifolds is established in [4-6] for the homogeneous case and in [7]
for the inhomogeneous case. In all of these results the error function ¥ was assumed to be
monotonic. In 2005 Beresnevich [8] showed that the condition that ¥ is monotonic could
be removed for the Veronese curve ¥}, = = {(z,2?%,...,2") : # € R}; he conjectured that
the result should also hold for any non—degenerate curve in Euclidean space. This was
proved in [9].

Our main result below is a convergent part of Groshev type theorem for inhomoge-
neous Diophantine approximation on non—degenerate curves in Euclidean space without
monotonicity condition. First some notation is needed. Let ¥, be the set of functions

anfn(x) +... +a1f1(a:) + ao,

with n > 2, a = (ao,...,a,) € Z"\ {0}, and fi, fo,..., f, be C") functions from
R — R with non—vanishing Wronskian wr(f1, ..., f,,)(x) almost everywhere. For F' € 7,
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define the height of F' as H = H(F) = maxo<;<n |a;j|. The Lebesgue measure of a
measurable set A C R is denoted by p(A).

Define a real valued function ¥ : Rt — RT and a function # : R — R. Denote by
Ly, 0(¥) the set of x € R such that the inequality

|F(z) + 0(x)| < W(H(F)) (1)

has infinitely many solutions F' € ¥,.
The main result of this paper is the following statement.

Theorem 1. Let n > 2 and 6 : R — R be a function such that 0 € C™ ., Let ¥ : Rt —

R* be an arbitrary function (not necessarily monotonic) such that the sum > h"~'W(h)
h=1
converges. Then p(L, (%)) = 0.

Throughout, the Vinogradov symbol < is used so that if K and M are positive real
numbers then K <« M means that there exists C > 0 such that K < CM. If K < M
and M < K we write K < M.

1 Proof of Theorem 1

First note that since > A" ~1W(h) converges, h"~1W(h) tends to 0 as h — oo. Therefore,
h=1

U(h) = o(h™ ). (2)

The set S ={x € R:wr(fi,..., f,)(x) =0} is closed and of zero measure. Thus R\ S is

oo

open and therefore an F,, set. We can write R\ S = | [ag, bx]. It is therefore sufficient

to prove the theorem for a closed interval I. Also, since lwr(f1,..., f1)(@)| # 0 almost
everywhere we will assume from now on, without loss of generality that

lwr(fi,...,f1)(@)| >e=¢e(l)>0 (3)
for all z in such an interval I. Since the functions f = (fy,..., f,) and 6 are C("") then
we can assume that there exists a constant Ko = Ky(Z,f,8) such that

(1) < (2) <
(nax. ité}; [f%(z)| < Ky and (nax. ité}; [0\ (z)| < K. (4)

Lemma 1 [9]. If [wr(ff,..., f)(z)| > ¢ then |f,(x)f}(x) — f1(x)f;(@)| > gy for

HinlK

alli, j in {1,...,n}.
From now on, it is therefore assumed without loss of generality that

2
/ 20
@) =~ @) 2 6= T (5)
for all i,5 € {1,...,n} with i # j.
For the proof of main result we will need some properties of the functions F' € F,. The
following lemma is a modification and combination of Lemmas 2 and 3 of Pyartli, [11].
We are assuming that (3) holds.
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Lemma 2 (Borel-Cantelli). Let A; be a family of Lebesgue measurable sets and let

A be the set of points x € R which lie in infinitely many A;. If Y p(A;) < oo then
i=1
#(As) = 0.

1.1 The case of small derivative

Proposition 1. Let n > 2. Then, u(£Ly(n,0)) = 0.
Proof. First £1(n,0) is written as a lim sup set. For F' € F, define
B(F)={x€I: |F(z)+0(z) < HF)" ", |F'(x)+6(z)| < HF)"}.

Then

Ll(n79): m U U B(F)a

N=1t=N FeF}

where
Fl={FeF, 2" <HF)<2"}

To prove the proposition it will be shown that a larger set (containing £;(n,6)) has
measure zero and then the Inhomogeneous Transference Principle proved in [2] will be
used. The Inhomogeneous Transference Principle allows the transfer of zero measure
statements for homogeneous lim sup sets to inhomogeneous lim sup sets and is described
below.

Inhomogeneous Transference Principle. Most of this section is adapted from [2,
Case B]. For our purposes the two countable indexing sets T and 4 from [2] are the sets
T = NU{0} and 4 = F,. Throughout, J denotes a finite open interval in R with closure
denoted by J. Let # and I be two maps from (NU{0}) x %, x R* into the set of open
subsets of R such that

H(t,Fe) = IL(F,e), I(t,F,e)= I}(F,e¢).

For the specific case considered in this article the sets I} (F,€) and I}(F,€) are defined as
follows:
{zel: |F(z)+0(x)| <2t e |F'(x) 4+ 0'(x)] < 277} if F e FL,

1] else;

I}(F,e) = {

and

Ig(F,e) =

. t(—n+1) ! —tv : t+1l s
{{xe[. |F(z)| < 2 6, |[F'(x)] <27} if Fe U, s ()

else.

Let § € R and define the function ¢s(t) = 2°¢. Also, define ® = {¢s : 0 < § < v/2}.
For any ¢ € ® define

50)= |J BFE) = J LEF ()

FEF, FeT;
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and denote by A;(¢) the limsup set

A(¢)= () U %(9).
N=1t=N

Intersection Property: Let ® denote a set of functions ¢ : NU {0} — RT. The
triple (H, I, ®) is said to satisfy the intersection property if for any ¢ € ® there exists
¢* € ® such that for all but finitely many ¢ € NU {0} and all distinct F, F € %,

IH(F,¢(t) N I(F, 6(t)) C Ii(e7). (7)

Contracting Property: Let {k;};cn be a sequence of positive numbers such that

Z kit < 0. (8)

teNU{0}

The measure 4 is said to be contracting with respect to (I, ®) if for any ¢ € ® there exists
¢+ € @ such that for all but finitely many ¢ and all F' € ¥, there exists a collection C g
of balls B centred in J satisfying the following three conditions:

IngFe¢t)c |J B 9)
BeCy,r
I U BciFé @), (10)
BeCy,r
u(5B N L(F,¢(t))) < ku(5B). (11)

We now state the theorem from [2].

Theorem 2 (Inhomogeneous Transference Principle). Suppose that (#, I, ®) satisfies
the intersection property and that u is contracting with respect to (I, ®). If, for all ¢ € P,
w(Asr(@)) =0 then for all ¢ € ©, p(Af(4)) = 0.

First the contracting and intersection properties are verified and then it will be shown
that u(Ag(¢s)) = 0. This will imply using the transference principle that A;(¢s) has
measure zero and further that p(£;(n,d)) = 0 as required.

1.1.1 Verifying the intersection property

Let t € NU {0} and F,F € ¥, with F # F. Suppose that
z € Ij(F,¢s(t) N I (E, ¢5(1)).

Then, the inequalities

|F(z) +0(z)] < ¢s()2'"F)  and  |F(x) + 0(x)] < ¢5(t) 24D,
[F'(2) +0'(2)| < ¢5(t)27""  and  |F'(2) +0'(x)] < ds(t)2™""

holds.
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Let R(z) = (F(z) + 0(z)) — (F(z) + 6(z)). Then,

|R(z)| < 205 ()21 < g (¢)2HHD)
|R'(z)] < 2" o5(t) < 27" ¢ (1),

for all t > v/2%5 and where ¢g5 € ®. Clearly R cannot be constant for n > 2 and t > 2,

t+1
so Re U %2 Thus, z € IL(R, ¢s(t)) and (7) is satisfied with ¢* = ¢ .
;=0

S

1.1.2 Verifying the contracting property

The following definition from [1] will be used.

Definition 1. Let C' and « be positive numbers and f : I — R be a function defined
on the open interval I C R. Then f is called (C,a)-good on I if, for any open interval
B C I and any € > 0,

p{z e B:[f(2)] < €sup [f(2)[}) < Ce*u(B).

Several useful facts about (C, a)-good functions are listed below.

Lemma 3. ( [6, Lemma 3.1]) Let I C R and C,« > 0 be given.

(i) If f is (C,«)-good on I then so is Af for any A € R.

(ii) If f;, i € Iy, are (C,a)-good on I then so is sup,cy, | fil.

(iii) If f is (C, a)-good on I and ¢; < % < ¢y forallz € I, then g is (C(ca/c1)®, a)-
good on 1.

(iv) If f is (C, a)-good on I then f is (C',a’)-good on I’ for every C' > C, o/ < a and
I'clI.

Lemma 4. [7, Corollary 3] Let U be an open subset of R™, xo € U and let f =
(fi,-.., fn) : U = R™ be n-nondegenerate at xq for some n > 2. Let § € C™(U). Then
there exists a neighborhood V. C U of x¢ and a positive constants C' and H, such that
for any a € R™ satisfying |a| > Hy

(a) ag+a-f+0is (C,-1)-good on V for every ag € R, and

nm

(b) |V(a-f+0) is (C, m)—good onV.

Here V denotes the gradient operator. Note that in the case m = 1 the map f is
nondegenerate iff wr(f,..., f})(z) # 0 almost everywhere.

Lemma 5. [7, Corollary 4] Let U, x,f and 6 be as in Lemma 4. Then for every suffi-
ciently small neighborhood V- C U of xg, there exists Hy > 1 such that

inf  suplap +a-f(x)+0(x)| > 0.
(a,a0)€R™ ! xeV
la|=Ho

Since Fy p is a (C, 2)-good on 5J for sufficiently large t it follows from (9)—(11), that

w(IE(F,¢5(t)) N5B) < u({x € 5B : Fy p(x) <27 sup Fyp(z)})
) rebB (12>
<275 Cpu(5B)
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5%

for sufficiently large t. This verifies (11) with k; := 275" C and it is easily seen that the
convergence condition (8) is fulfilled.
O

1.2 The case of big derivative
Proposition 2. Let n > 2. Then, u(Ly(n,0,¥)) = 0.

Proof. Let ,(H) ={F € %, : H(F) = H}, then F, = U¥_, F.(H). Now consider
F € F,(H) satistying H™" < |F'(x)+6’(x)|. For the remaining case we need the following.
The set of solutions of (1) in I consists of at most n intervals. Each of these intervals can
be further divided into subintervals on which F’ + ' is also monotonic (at most n — 1
of them). Each of these new intervals is finally further subdivided into intervals with
respect to the value of F'(z) + ¢'(z). Any interval on which |F’'(z) + 6'(x)| < H~? has
already been considered. For F' € F,(H), let I;(F, ) be one of the remaining intervals;
thus, on I;(F,0), F 4+ 6 and F' + ¢’ are monotonic and |F(z) + 6(z)| < V(H(F)),
H™" < |F'(xz) + ¢'(z)| for all € I;(F,0). The number of I;(F,0) is clearly finite. Let
I;(F,0) denote the closure of I;(F,f) and o; p denote a point in I;(F,6) such that

[F'(aj,p) + 0'(ajp)| = min [F'(z) +6'(z)].
CDGIJ'(F)

For convenience we will use Fy to denote the function F(z) + 0(x).
Lemma 6. [11] Let aj,as > 0. Let ¢ be an n-times continuously differentiable function

on (by, by) satistying | (z)| > a1 for all x € (by,by). Then

p({z € (b1,b2) s P(z) < az}) < e(n)(az/ar)'/™.

From Lemma 6 we have
p(I;(F,0)) < c(n)¥(H)|Fg(a; )|~ (13)

It follows from the choice of o p that H=" < |Fy(ay p)|.

Now we are ready to complete the proof of Theorem 1. The three remaining cases in
the proof concern different ranges for the size of Fy(a; r).
Case I. For F € F,(H), let 0(Fy) be the union of intervals I;(F, #) for which |Fy(a;)| >
c1H'Y?. Hence, o(Fy) is the set of € I which satisfy |Fy(z)| < ¥(H) and = lies in some

interval I;(F,#) for which
|[F(aj,p)| = el HY?. (14)

For every F' € ¥, (H) and every j, where a; p € o(Fp), and some constant co = ca(n)
define the set oy ;(Fy) of points x € I which satisfy

|z — aj,p| < cal Fy(ay,m)| ™"

] for a; p € o(Fy). Let o1(Fy) = Ujo1,;(Fp). From (13), for H > Hy(cz2), the inequality
o(Fy) C 01(Fp) holds and

w(o(Fy)) < e(n)eg " (H)p(on (Fy)). (15)
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For each j with o € o(Fpy) develop F' as a Taylor series on o1 ;(Fy) so that
Fy(x) = Fo(aj,r) + Fylar)(z — ajp) + F (&) (z — a;r)?/2,
where £ is between x and «; p. Estimate each term in the above equation to obtain

|Fo(ajr)l < W(H) < cg,
|Fy(ajr)(z —ajr)| < ca,
|Fy (o, p) (2 — )| < 2nKoH (co| Fy (o, r)| )% = 2nKocsey .

Case II. This time, for F' € F,(H) use o(Fpy) to denote the union of intervals I;(F,0)
for which 1 < |F'(a; r)| < ¢t HY?. Hence o(Fp) is the set of = € I which satisfy

[Fy(2)] < W(H),
and z lies in some [;(F, ) for which
1 < |Fj(ajp)| < et HY. (16)
Now define expansion of I;(F,0) as follows:
09.j(Fp) :={x € I: dist(z,[;(F,0)) < csH '|F'(aj r)| "}, e3> c(n).

Let o2(Fy) = Joa,;(Fp). It is readily verified that
J

wo(Fy)) < c5'c(n) HY(H)p(o(Fp)). (17)

First, the essential intervals are investigated. Summing the measure of essential in-

Z Z oz, (Fp)) < |1

FeFn b, (H)

tervals gives

J
02, (Fg) essential

From this, (17) and the fact that the number of vectors by is < H" 2 we have

Yo Y wlo(Fy) < HMU(H)|.

by FE€fn b, (H)

Finally, we obtain

3 D> uo(F)) < oo

H=1 b,y Fef}'—n,bl (H)

Thus, by the Borel-Cantelli Lemma, the set of points x which belong to infinitely many
essential domains is of measure zero.

Case III. This is very similar to the previous case. For F' € %, (H) use o(Fy) to denote
the union of intervals I;(F, ) for which H™" < |Fy(a;,r)| <1 with 0 < v < 1/4. Hence
o(Fp) is the set of x € I which satisfy

|[Fo(2)| < U(H),
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and « lies in some I;(F, 6) for which
H™" < [Fy(ajr)| < L.
Fix the vector by as above and define the following expansions of I;(F,§):

03,j(Fp) :=={z € I: dist(z,I;(F,0)) < C4H_1‘F/(Oéj,F)|_1}, cq > c(n),
b (Fp) :=={x € I : dist(x, I;(F,0)) < H'T4/3},

From this,
uo(F)) < e te(n)p(os(F))H(H), (18)

where 03(Fy) = Ujos;(Fy). It is clear that o3 ;(Fp) C o3 ;(Fy). Moreover, it is easy to
see that ~
03.(Fp) C 03 ;(Fp) (19)

for any F' € F,p, (H) with o3:(Fp) N o3 ;j(Fy) # 0.
Summing the measures of the essential intervals o3(Fy) gives

> S ulos(E) < 11 (20)

FeFnn, (H) J
o3,j(Fp) essential

As #b; < H"2, from (18) and (20), we have

ST pleFe) < Y HU(H)|I| < o

H=1 by FEF, b, (H) H=1

By the Borel-Cantelli Lemma, the set of those x belonging to infinitely many essential
intervals has zero measure.
The proof of the theorem is therefore complete. |
Link to the picture 1 — 1.
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H. B. Bydapuna Heomuoponubie muodaHTOBBI IPUOIMKEHUST HA KPUBBIX C
HEMOHOTOHHOU (yHKIHEH annpokcuMaluu. JlaJpbHEeBOCTOYHBIN MaTeMaTH-
yeckuit >xyprasa. 2017. T. 17. Ne 1. C. 1-9.

AHHOTAIINA

B manHO# cTaThe MOKA3BIBAETCS HEOMTHOPOIHBIM aHAJIOT TeopeMbl Tuta I'po-
[IEBa B CJy4Yae CXOJMMOCTH JJisi HEBBIPOXKJIEHHBIX KPUBBIX B €BKJINIOBOM
MPOCTPAHCTBE, KOrya (DYHKINS AIIPOKCUMAIINH SABJISETCS He 00A3aTeIHHO
MoHOTOHHOW. Harm pesysibraT ecrecTBEHHO BKJIIOYaeT B cebst u 0bobIaeT
TeOpeMy JJisi MEPbI MHOXKECTBA TOYEK HEBLIPOXKIEHHBIX KPUBBIX B OJHOPOJI-
HOM ciiydae. B oka3aTenbcTBe HCIOMB3yIOTCS HEOMHOPOIHBIH METOJ TIepe-

HOCa 1 METO/l CYIIECTBEHHbIX N HECYIIECTBEHHBIX obJracreit CHpI/IH,H}KyKa.

Kirouesie ciioBa: HeodHopodHbie duodarmosv, npubiusicerus, meopema XuH-
YUHA, HEGHIPONCOCHNAA KPUGCAA.
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