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Let X be a right homogeneous space of a connected linear algebraic group G′ over a number
�eld k, containing a k-point x. Assume that the stabilizer of x in G′ is connected. Using
the notion of a quasi-trivial group introduced by Colliot-Th�el�ene, we can represent X in the
form X = H\G, where G is a quasi-trivial k-group and H ⊂ G is a connected k-subgroup.

Let S be a �nite set of places of k. Applying results of [1], we compute the defect of weak
approximation for X with respect to S in terms of the biggest toric quotient Htor of H.
In particular, we show that if Htor splits over a metacyclic extension of k, then X has the
weak approximation property. We show also that any homogeneous space X with connected
stabilizer (without assumptions on Htor) has the real approximation property.
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1. Introduction

This note is a sequel for [1], and we use the notation of that paper. Let k be a number �eld,
and let k be a �xed algebraic closure of k. We write V for the set of all places of k, and V∞ for
the set of its archimedean places. If v ∈ V , we write kv for the completion of k at v.

Let X be an algebraic variety over k. We refer to [1] for preliminaries on weak approximation
for X. If S ⊂ V is a �nite set of places, we write (WAS) for the weak approximation property
with respect to S. Thus, �X has (WAS)� means that X(k) is dense in

∏
v∈S X(kv). We say that

X has the weak approximation property, if X has (WAS) for any �nite subset S ⊂ V . We say
that X has the real approximation property, if X has the weak approximation property (WAS)
with respect to S = V∞.

In [1] we considered the case X = H\G, where H ⊂ G is a connected k-subgroup of a
connected k-group G, assuming that X(G) = 0 and A(G) = 0 (the assumption A(G) = 0
means that G has the weak approximation property). Under these assumptions we constructed
a certain abelian group CS(H,G) which is the defect of weak approximation for X with respect
to S: the variety X has (WAS) if and only if CS(H,G) = 0. We initially constructed CS(H,G)
in terms of H and G, but then we computed it in terms of the Brauer group of X.

In the present note we consider the case of an arbitrary homogeneous space with connected
stabilizer X = H ′\G′, where G′ is any connected linear k-group and H ′ ⊂ G′ is a connected
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k-subgroup. Using the notions of a quasi-trivial k-group and a �asque resolution, introduced by
J.-L. Colliot-Th�el�ene [2], we notice that we can represent X in the form X = H\G, where G is
a quasi-trivial group and H ⊂ G is a connected k-subgroup (Lemma 2.5). We have X(G) = 0
and A(G) = 0, because G is quasi-trivial. Now we can apply [1, Theorem 1.3]. We obtain that
X has (WAS) if and only if CS(H,G) = 0.

Moreover, we have Pic(GK) = 0 for any �eld extension K/k, because G is quasi-trivial. Using
this fact, we show that the group CS(H,G) can be computed in terms of H only. Namely, we
construct a group CS(H) in terms of H as in [3] and prove that CS(H,G) = CS(H) (Lemma
3.4).

We see that X has (WAS) if and only if CS(H) = 0. We say that CS(H) is the defect of

weak approximation for X with respect to S. Note that the group CS(H) does not depend on the
representation of X in the form X = H\G with quasi-trivial G and connected H, because it can
be computed in terms of the Brauer group of X ([1, Theorem 1.11]).

Let Htor denote the biggest quotient torus of H. We show that the canonical homomorphism
CS(H) → CS(H

tor) is an isomorphism (Proposition 3.7). It follows that X has (WAS) if and
only if CS(H

tor) = 0. We notice that

CS(H
tor) ≃ coker

[
H1(k,Htor) →

∏
v∈S

H1(kv, H
tor)

]
.

Let L/k be a Galois extension splitting the torus Htor. Let S0 denote the set of
(nonarchimedean, rami�ed in L) places v of k such that the decomposition group of v in Gal(L/k)
is noncyclic. We prove that CS(H) = CS∩S0(H) (Corollary 3.11).

Assume that S ∩ S0 = ∅, i.e. all the places in S have cyclic decomposition subgroups in
Gal(L/k). Then CS(H) = 0, hence X has (WAS) (Theorem 3.12). In particular, CV∞(H) = 0
for any H. Thus any homogeneous space X of a connected k-group with connected stabilizer has
the real approximation property (Corollary 3.13).

Now assume that Htor splits over a cyclic extension of k (e.g. Htor = 1). Then S0 = ∅, hence
CS(H) = 0 for any S, and X has the weak approximation property (Corollary 3.14). Moreover,
we prove that if Htor splits over a metacyclic extension, then X has the weak approximation
property (Theorem 4.2).

These results generalize the results of [3], where we assumed that G is semisimple simply
connected. They also generalize results of Sansuc [4] on weak approximation for connected linear
groups.

We could state and prove our results thanks to the notion of a quasi-trivial group introduced
by Colliot-Th�el�ene [2]. The constructions and proofs are based on results of Kottwitz [5]. Of
course, our results are based on the classical results of Kneser, Harder, Chernousov, and Platonov
on the Hasse principle and weak approximation for simply connected semisimple groups.

Acknowledgements. This note was written when the author was visiting the Max-Planck-
Institut f�ur Mathematik, Bonn (MPIM). The author is grateful to MPIM for hospitality, support,
and excellent working conditions. The author is grateful to Boris Kunyavski�� for useful discussions
and for help in proving Theorem 4.2.

2. Preliminaries on quasi-trivial groups

The results of this section are actually due to J.-L. Colliot-Th�el�ene [2].
2.1. Let k be a �eld of characteristic 0, k a �xed algebraic closure of k. Let G be a connected

linear k-group. We set G = G×k k. We use the following notation:
Gu is the unipotent radical of G;
Gred = G/Gu (it is reductive);
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Gss is the derived group of Gred (it is semisimple);
Gtor = Gred/Gss (it is a torus);
Gssu = ker[G → Gtor] (it is an extension of Gss by Gu).

De�nition 2.2 (J.-L. Colliot-Th�el�ene). A connected linear k-group G over a �eld k of
characteristic 0 is called quasi-trivial, if Gtor is a quasi-trivial torus and Gss is simply connected.

Recall that a k-torus T is called quasi-trivial if its character group X(T ) is a permutation
Gal(k/k)-module.

Note that if G is quasi-trivial, then for any �eld extension K/k the group GK is quasi-trivial.
Lemma 2.3. Let G be a quasi-trivial group over a �eld k of characteristic 0. Then Pic(G) = 0,

where Pic denotes the Picard group.

P r o o f. If
1 → G′ → G → G′′ → 1

is a short exact sequence of connected linear k-groups, then we have an exact sequence

X(G′) → Pic(G′′) → Pic(G) → Pic(G′), (1)

where X(G′) denotes the group of k-characters of G′, see [4, Corollary 6.11].
Since Gu is a unipotent k-group, the exponential map exp: LieGu → Gu is a biregular

isomorphism of algebraic varieties (because char(k) = 0), hence Pic(Gu) = 0. By [4, Lemme 6.9]

Pic(Gss) = 0 (because Gss is simply connected) and Pic(Gtor) = H1(k,X(G
tor

)). Since X(G
tor

)
is a permutation module, we see that Pic(Gtor) = 0. Using exact sequence (1), we conclude by
d�evissage that Pic(G) = 0.

Lemma 2.4. Let G be a quasi-trivial k-group over a number �eld k. Then X(G) = 0 and

A(G) = 0.
P r o o f. By [2, Proposition 9.2] we have X(Gred) = 0 and A(Gred) = 0. By [4, Proposition

4.1] X(G) = X(Gred). By [4, Proposition 3.2] A(G) = A(Gred). Thus X(G) = 0 and A(G) =
0.

Lemma 2.5. Let k be a �eld of characteristic 0 and X a right homogeneous space with

connected stabilizer over k, i.e. X = H ′\G′, where G′ is a connected linear k-group and H ′ ⊂ G′

is a connected k-subgroup. Then one can represent X as X = H\G, where G is a quasi-trivial

k-group and H ⊂ G is a connected k-subgroup.
P r o o f. By [2, Proposition-D�e�nition 3.1] there exists a �asque resolution of G′, i.e. a central

extension of connected k-groups

1 → F → G → G′ → 1,

where G is quasi-trivial and F is a �asque k-torus. Let H be the preimage of H ′ in G. From the
exact sequence

1 → F → H → H ′ → 1

we see that H is connected, because H ′ and F are connected. We have X = H\G.

3. Defect of weak approximation

3.1. Let X be a homogeneous space with connected stabilizer over a number �eld k, i.e.
X = H ′\G′, where G′ is a connected linear k-group and H ′ ⊂ G′ is a connected k-subgroup.
By Lemma 2.5 we may write X = H\G, where G is a quasi-trivial k-group and H ⊂ G is a
connected k-subgroup.

By Lemma 2.4 X(G) = 0 and A(G) = 0. Therefore we can apply the results of [1].
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3.2. Let X, G, H be as in 3.1. Let S ⊂ V be a �nite subset. Set

B(H) = Hom(Pic(H),Q/Z) = (π1(H)Γ)tors

Bv(H) = B(Hkv) for v ∈ V

with the notation of [1]. Consider the canonical homomorphism

λv : Bv(H) → B(H).

Set:

BS(H) = ⟨λv(Bv(H))⟩v∈V rS

B′(H) = B∅(H) = ⟨λv(Bv(H))⟩v∈V

CS(H) = B′(H)/BS(H),

where ⟨λv(Bv(H))⟩v∈V rS denotes the subgroup of B(H) generated by the subgroups λv(Bv(H))
for all v ∈ V r S.

3.3. For a homogeneous space X = H\G over k, without assuming that G is quasi-trivial,
we de�ned in [1] the following groups:

B(H,G) = ker[B(H) → B(G)],

Bv(H,G) = B(Hkv , Gkv) = ker[Bv(H) → Bv(G)],

and also BS(H,G), B′(H,G), and CS(H,G), see [1, Section 1.2].
Lemma 3.4. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial). Then there is a

canonical isomorphism CS(H,G)
∼→ CS(H).

P r o o f. Since G is quasi-trivial, by Lemma 2.3 Pic(G) = 0, hence B(G) = 0. Since Gkv is also
quasi-trivial, we see that Bv(G) = 0. We obtain successively that B(H,G) = B(H), Bv(H,G) =
Bv(H), BS(H,G) = BS(H), B′(H,G) = B′(H), whence CS(H,G) = CS(H).

Theorem 3.5. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial). Let S ⊂ V be

a �nite set of places of k. Then X has (WAS) if and only if CS(H) = 0.
P r o o f. By Lemma 2.4 X(G) = 0 and A(G) = 0. By [1, Theorem 1.3] X has (WAS) if

and only if CS(H,G) = 0. By Lemma 3.4 CS(H,G) = CS(H), and the theorem follows.
Lemma 3.6. Let H be a connected linear k-group over a number �eld k. Assume that Htor =

1. Then for any place v of k the map λv : Bv(H) → B(H) is surjective.
P r o o f. See [6, Proof of Theorem 3.4(b)].
Proposition 3.7 ([3, Theorem 1.4]). Let H be a connected k-group over a number �eld k.

Let S ⊂ V be a �nite set of places of k. Then the canonical homomorphism CS(H) → CS(H
tor)

is an isomorphism.

P r o o f. Since [3] is not easily accessible, we reproduce the proof here.
First, consider Hssu. Since (Hssu)tor = 1, by Lemma 3.6 for any place v of k we have

λv(Bv(H
ssu)) = B(Hssu). We see that BS(Hssu) = B′(Hssu) = B(Hssu).

Consider the canonical short exact sequence

1 → Hssu → H → Htor → 1.

Exact sequence (1) from the proof of Lemma 2.3 gives us an exact sequence

X(Hssu) → Pic(Htor) → Pic(H) → Pic(Hssu),

where clearly X(Hssu) = 0. We obtain the dual exact sequence

B(Hssu) → B(H) → B(Htor) → 0
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and similar exact sequences for the groups Bv. Since BS(Hssu) = B(Hssu), we obtain an exact
sequence

B(Hssu) → BS(H) → BS(Htor) → 0.

Set B = im[B(Hssu) → B(H)], then we obtain an exact sequence

0 → B → BS(H) → BS(Htor) → 0

and a commutative diagram with exact rows

0 // B // BS(H)� _

��

// BS(Htor)� _

��

// 0

0 // B // B′(H) // B′(Htor) // 0

Now the snake lemma gives us an isomorphism CS(H) = B′(H)/BS(H)
∼→ B′(Htor)/BS(Htor) =

CS(H
tor).

Corollary 3.8. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H is

connected). Assume that Htor = 1. Then X has the weak approximation property.

P r o o f. By Proposition 3.7 we have CS(H) = CS(H
tor) = 0 for any S. By Theorem 3.5, X

has (WAS) for any S.
R e m a r k. In the case when G is semisimple simply connected, this result was proved in

[3, Corollary 1.7]. For a simple proof see [6, Theorem 3.4(b)].
The following result relates CS(H) to the Galois cohomology of Htor.
Proposition 3.9. Let T be a k-torus over a number �eld k. Let S ⊂ V be a �nite set of

places of k. Then there is a canonical isomorphism

CS(T )
∼→ coker

[
H1(k, T ) →

∏
v∈S

H1(kv, T )

]
.

P r o o f. We have canonical duality isomorphisms

βv : H
1(kv, T )

∼→ Hom(H1(kv,X(T )),Q/Z) = Bv(T ),

cf. [7, Chapter I, Corollary 2.3 and Theorem 2.13]. Moreover, we have an exact sequence

H1(k, T )
loc−−→ ⊕v∈V H1(kv, T )

µ−−→ B(T ), (2)

where loc is the localization map, µ((ξv)v∈V ) =
∑

µv(ξv), and µv is the composed map

µv : H
1(kv, T )

βv−−→ Bv(T )
λv−−→ B(T ),

cf. [7, Chapter I, Theorem 4.20(b)].
Consider the localization map locS : H

1(k, T ) →
∏

v∈S H1(kv, T ). Let ξS = (ξv)v∈S ∈∏
v∈S H1(kv, T ) = ⊕v∈SBv(T ), where we identify H1(kv, T ) with Bv(T ) using βv. From exact

sequence (2) we see that ξS is contained in the image of locS if and only if there exists an element
ξS ∈ ⊕v/∈SBv(T ) such that µ(ξS , ξ

S) = 0. Such an element ξS exists if and only if∑
v∈S

µv(ξv) ∈ BS(T ) ⊂ B(T ).
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Set BS(T ) = ⟨λv(Bv(T ))⟩v∈S . Then we see that there is a canonical isomorphism

coker

[
H1(k, T ) →

∏
v∈S

H1(kv, T )

]
∼→ BS(T )/

(
BS(T ) ∩BS(T )

)
≃

≃
(
BS(T ) +BS(T )

)
/BS(T ) = B′(T )/BS(T ) =CS(T ).

Proposition 3.10. Let T be a k-torus over a number �eld k. Let L/k be a Galois extension

splitting T . Let S0 be the set of (nonarchimedean, rami�ed in L) places v of k whose decomposition

groups in Gal(L/k) are noncyclic. Let S ⊂ V be any �nite set of places of k. Then the canonical

homomorphism CS(T ) → CS∩S0(T ) is an isomorphism.

P r o o f. Let v ∈ S. Let w be a place of L lying over v. Let Dw ⊂ Gal(L/k) be the
decomposition group of w. Then by [4, Lemme 6.9] Pic(Tkv) = H1(Dw,X(TL). We see that the
image λv(Bv(T )) ⊂ B(T ) depends only on the conjugacy class of Dw ⊂ Gal(L/k).

If v ∈ S, v /∈ S0, then Dw is cyclic for w lying over v. By Chebotarev's density theorem there
exists v′ /∈ S and w′ lying over v′ such that Dw′ = Dw. It follows that λv(Bv(T )) = λv′(Bv′(T )).
But v′ /∈ S, hence λv′(Bv′(T )) ⊂ BS(T ). We see that λv(Bv(T )) ⊂ BS(T ). Thus BS∩S0(T ) =
BS(T ). We conclude that CS∩S0(T ) = CS(T ).

Corollary 3.11. Let H be a connected linear k-group over a number �eld k. Let L/k be a

Galois extension splitting Htor. Let S0 be the set of places v of k whose decomposition groups

in Gal(L/k) are noncyclic. Let S ⊂ V be any �nite set of places of k. Then the canonical

homomorphism CS(H) → CS∩S0(H) is an isomorphism.

P r o o f. We have a commutative diagram of canonical homomorphisms

CS(H)

��

≃ // CS(H
tor)

≃
��

CS∩S0(H)
≃ // CS∩S0(H

tor)

By Proposition 3.7 the horizontal arrows are isomorphisms. By Proposition 3.10 the right vertical
arrow is an isomorphism. We conclude that the left vertical arrow is also an isomorphism.

Theorem 3.12. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H is

connected). Let L/k be a Galois extension splitting Htor. Let S0 be the set of places v of k whose

decomposition groups in Gal(L/k) are noncyclic. Let S ⊂ V be a �nite set of places of k such

that S ∩ S0 = ∅. Then X has (WAS).
P r o o f. By Corollary 3.11 CS(H) = CS∩S0(H) = C∅(H) = 0. By Theorem 3.5 X has

(WAS).
Corollary 3.13. Let X be as in 3.1. Then X has the real approximation property.

P r o o f. Let L and S0 be as in Theorem 3.12. Take S = V∞. A decomposition group of an
archimedean place is either 0 or Z/2, hence cyclic. We see that V∞ ∩ S0 = ∅. By Theorem 3.12
X has (WAV∞), i.e. X has the real approximation property.

A n o t h e r p r o o f. The subgroup H is connected, and we have X(G) = 0 and A(G) = 0.
Now by [1, Corollary 1.7] X has the real approximation property.

Corollary 3.14. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H
is connected). Assume that Htor splits over a cyclic extension L of k. Then X has the weak

approximation property.

P r o o f. Let S0 denote the set of places v of k whose decomposition groups in Gal(L/k) are
noncyclic, then S0 = ∅. Thus for any �nite S ⊂ V we have S ∩ S0 = ∅. By Theorem 3.12 X has
(WAS) for any S, i.e. X has the weak approximation property.
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4. Metacyclic extensions

In this section, inspired by [4, Lemme 1.3], we generalize Corollary 3.14.
4.1. Recall that a �nite group is called metacyclic if all its Sylow subgroups are cyclic. For

example, the symmetric group S3 is metacyclic, while the group Z/2⊕ Z/2 is not. Every cyclic
group is metacyclic. We say that a Galois extension L/k is metacyclic if Gal(L/k) is a metacyclic
group.

Theorem 4.2. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H is

connected). Assume that Htor splits over a metacyclic extension L of k. Then X has the weak

approximation property.

P r o o f. Set T = Htor, then T is a k-torus splitting over L. By Theorem 3.5 and Proposition
3.7 it su�ces to prove that CS(T ) = 0. Set

Q1
S(T ) = coker

[
H1(k, T ) →

∏
v∈S

H1(kv, T )

]
.

By Proposition 3.9 CS(T ) ≃ Q1
S(T ).

We write T̂ for X(T ). Set

X1
S(k, T̂ ) = ker

[
H1(k, T̂ ) →

∏
v∈V rS

H1(kv, T̂ )

]
X1

ω(k, T̂ ) =
∪
S

X1
S(k, T̂ )

X1
S,∅(k, T̂ ) = X1

S(k, T̂ )/ X1
∅(k, T̂ ).

By [8, Theorem 0.3]
Q1

S(T ) ≃ Hom( X1
S,∅(k, T̂ ),Q/Z).

Now X1
S,∅(k, T̂ ) is by de�nition a subquotient of X1

ω(k, T̂ ). Thus in order to prove the theorem

it su�ces to show that X1
ω(k, T̂ ) = 0.

Denote by g the image of Gal(L/k) in Aut(T̂ ). Then g is a �nite metacyclic group. We may
and shall assume that Gal(L/k) = g. For a place v of k, let Dw ⊂ g denote the decomposition
group of a place w of L extending v. We write gv for Dw, it is de�ned up to conjugacy in g.
Since Gal(k/L) is a pro�nite group and T̂ is a free abelian group, we have H1(L, T̂ ) = 0. From
the in�ation-restriction exact sequence

0 → H1(g, T̂ ) → H1(k, T̂ ) → H1(L, T̂ ) = 0

it follows that the in�ation homomorphism H1(g, T̂ ) → H1(k, T̂ ) is an isomorphism. Similarly,
for each v the homomorphism H1(gv, T̂ ) → H1(kv, T̂ ) is an isomorphism. Thus we obtain an
isomorphism

ker

[
H1(g, T̂ ) →

∏
v∈V rS

H1(gv, T̂ )

]
∼→ X1

S(k, T̂ ).

It follows from Chebotarev's density theorem that

X1
ω(k, T̂ ) ≃ ker

[
H1(g, T̂ ) →

∏
C

H1(C, T̂ )

]
, (3)

where C runs over all cyclic subgroups of g.
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Now let F be any �nite group and Y a �nitely generated F -module. Let i ∈ Z. We write
Ĥ i(F, Y ) for the i-th Tate cohomology group. Following an idea of [9, page 734], we set

Xi
Ω(F, Y ) = ker

[
Ĥ i(F, Y ) →

∏
C

Ĥ i(C, Y )

]
,

where C runs over all cyclic subgroups of F . Then by (3) X1
ω(k, T̂ ) ≃ X1

Ω(g, T̂ ). In order to
prove Theorem 4.2 it su�ces to show that X1

Ω(g, T̂ ) = 0, which follows from the next lemma.
Lemma 4.3. (B. Kunyavski��, private communication). Let g be a metacyclic �nite group and

Y a �nitely generated g-module. Then Xi
Ω(g, Y ) = 0 for all i ∈ Z.

P r o o f. Let y ∈ Xi
Ω(g, Y ) ⊂ Ĥ i(g, Y ). For a subgroup h ⊂ g let Res h(y) ∈ Ĥ i(h, Y ) denote

the restriction of y to h. Since y ∈ Xi
Ω(g, Y ), we have Res C(y) = 0 for any cyclic subgroup

C ⊂ g. Since g is metacyclic, every Sylow subgroup of g is cyclic. We see that Res S(y) = 0 for
for any Sylow subgroup S of g. By [10, Chapter IV, Section 6, Corollary 4 of Proposition 8] we
have y = 0. Thus Xi

Ω(g, Y ) = 0. This completes the proofs of the lemma and of Theorem 4.2.
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Áîðîâîé Ì.Â. Äåôåêò ñëàáîé àïïðîêñèìàöèè äëÿ îäíîðîäíûõ ïðîñòðàíñòâ. II.
Äàëüíåâîñòî÷íûé ìàòåìàòè÷åñêèé æóðíàë. 2009. Ò. 9. � 1�2. Ñ. 15�23.

ÀÍÍÎÒÀÖÈß

Ïóñòü X � ïðàâîå îäíîðîäíîå ïðîñòðàíñòâî ñâÿçíîé ëèíåéíîé àëãåáðàè÷åñêîé
ãðóïïû G′ íàä ïîëåì àëãåáðàè÷åñêèõ ÷èñåë k, ñîäåðæàùåå k-òî÷êó x.
Ïðåäïîëîæèì, ÷òî ñòàöèîíàðíàÿ ïîäãðóïïà òî÷êè x â G′ ñâÿçíàÿ. Èñïîëüçóÿ
ïîíÿòèå êâàçèòðèâèàëüíîé ãðóïïû, ââåäåííîå Êîëüî � Òåëåíîì, ìû ìîæåì
ïðåäñòàâèòü X â âèäå X = H\G, ãäå G � íåêîòîðàÿ êâàçèòðèâèàëüíàÿ
k-ãðóïïà è H ⊂ G � åå ñâÿçíàÿ k-ïîäãðóïïà. Ïóñòü S � íåêîòîðîå
êîíå÷íîå ìíîæåñòâî íîðìèðîâàíèé ïîëÿ k. Ïðèìåíÿÿ ðåçóëüòàòû ðàáîòû
[B2], ìû âû÷èñëÿåì äåôåêò ñëàáîé àïïðîêñèìàöèè äëÿ X îòíîñèòåëüíî S
â òåðìèíàõ íàèáîëüøåãî ôàêòîð-òîðà Htor ãðóïïû H. Â ÷àñòíîñòè, ìû
ïîêàçûâàåì, ÷òî åñëè òîð Htor ðàñùåïëÿåòñÿ íàä íåêîòîðûì ìåòàöèêëè÷åñêèì
ðàñøèðåíèåì ïîëÿ k, òî îäíîðîäíîå ïðîñòðàíñòâî X îáëàäàåò ñâîéñòâîì ñëàáîé
àïïðîêñèìàöèè. Ìû ïîêàçûâàåì òàêæå, ÷òî ëþáîå îäíîðîäíîå ïðîñòðàíñòâî X
ñî ñâÿçíîé ñòàöèîíàðíîé ïîäãðóïïîé (áåç óñëîâèé íà Htor) îáëàäàåò ñâîéñòâîì
âåùåñòâåííîé àïïðîêñèìàöèè.
Êëþ÷åâûå ñëîâà: ëèíåéíûå àëãåáðàè÷åñêèå ãðóïïû, îäíîðîäíûå ïðîñòðàíñòâà,

ñëàáàÿ àïïðîêñèìàöèÿ


