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A homotopy-theoretic rigidity property
of Bott manifolds

The rigidity conjecture in toric topology posits that two toric manifolds are diffeomorphic
if and only if their integral cohomology rings are isomorphic as graded rings. Only a few
low dimensional cases have been resolved. We weaken the conjecture to one concerning
homotopy type rather than diffeomorphism, and show that the weaker conjecture holds for
Bott manifolds, once enough primes have been inverted. In particular, show that the rational
homotopy type of a Bott manifold is determined by its rational cohomology ring.

The material in this paper was inspired by the mathematics discussed at the International

conference «Toric Topology and Automorphic Functions» (September, 5-10th, 2011, Khaba-
rovsk, Russia).
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1. Introduction

There has been a great deal of interest recently in the rigidity of toric manifolds. A toric
variety X of dimension n is a normal complex algebraic variety with an action of an n-dimensional
algebraic torus (C*)™ having a dense orbit. A toric manifold is a compact smooth toric variety.
Masuda [5] showed that the variety type of a toric manifold is determined by its equivariant
cohomology algebra over H*(B(C*)™). Following this it was natural to ask to what extent the
diffeomorphism type of the manifold is distinguished by ordinary cohomology.

The rigidity conjecture: Two toric manifolds are diffeomorphic if and only if their integral
cohomology rings are isomorphic as graded rings.

Some partial results have been obtained in the case when the toric manifold is a Bott manifold
or a generalized Bott manifold. A Bott tower of height n is a sequence of manifolds

Trn—1 .
B, ﬂ)Bn,1 — - l)Bl £>B():p01nt

where B = P(C @ (j_1) is the projectivization of a complex line bundle (x_1 over By_1 and a
trivial line bundle C, and the fibre of each map 7, for 1 < k < n is S2. A Bott manifold of height
n is the total space B, in a Bott tower. A generalized Bott tower is a sequence of manifolds as
above where By, is the projectivization of a Whitney sum of complex line bundles, and the fibre
at each stage is CP™* for some nonnegative integer ny. The total space B, is a generalized Bott
manifold.

Masuda and Panov [6] showed that in the case of a Bott manifold, if H*(B,,) & H*([], S?)
then B, is diffeomorphic to [, S?. Choi, Masuda and Suh [3] improved this to the case of
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generalized Bott manifolds: if H*(B,,) = H*([[;_; CP™) then By, is diffeomorphic to [];"_, CP™:.
For the non-product cases, in [3] it was shown that the rigidity conjecture holds for generalized
Bott manifolds of height 2 and for Bott manifolds of height 3, and it has recently been announced
by Choi [2] that the conjecture also holds for Bott manifolds of height 4. A thorough discussion
of progress to date can be found in [4].

In this paper we consider a weaker version of the rigidity conjecture.

The homotopy-theoretic rigidity conjecture: Two toric manifolds are homotopy equivalent
if and only if their integral cohomology rings are isomorphic as graded rings.

There are advantages in weakening from a diffeomorphism to a homotopy equivalence. A
positive answer in the homotopy-theoretic case would give strong evidence for a positive answer
in the diffeomorphism case. A negative answer in the homotopy-theoretic case implies a negative
answer in the diffeomorphism case. Further, the case-by-case progress to date in the diffeomorphism
rigidity conjecture is ad hoc. We will obtain systematic results for the homotopy-theoretic rigidity
conjecture.

We prove the following. Let p1,...,pi, ... be the primes in N, listed in increasing order. Let
P, ={p1,...,m} Let R; be the ring of integers localized away from P,.

Theorem 1.1. Let B, and B], be Bott manifolds of height n. Suppose that all spaces and
maps are localized away from P;. If n < 2p;y1 — 1, then the following are equivalent:

(a) there is a ring isomorphism H*(B,; R;) = H*(B]; R);
(b) there is a homotopy equivalence By, ~ BY,.

Theorem 1.1 implies that the homotopy-theoretic rigidity conjecture holds for Bott manifolds,
provided enough primes have been inverted. The localization hypothesis is convenient but may
not necessary. It is used to eliminate potential obstructions in constructing a homotopy equivalence
By, ~ B], given an isomorphism H*(By; R;) = H*(B.; R;). It is useful to observe that Theorem 1.1
implies that the homotopy-theoretic rigidity conjecture holds for n < 4 provided 2 is inverted, and
it holds for n < 8 provided both 2 and 3 are inverted. More emphatically, Theorem 1.1 implies
that the homotopy-theoretic rigidity conjecture holds rationally: there is a rational homotopy
equivalence B, ~ B! if and only if there is an isomorphism of graded rings H*(B, : Q) &
H*(B], : Q).

The positive result in Theorem 1.1 raises many questions. Can the hypothesis regarding
localization away from P; be removed? As this may be difficult, perhaps a starting point is to ask
whether the dimensional range n < 2p;11—1 can be improved. Can Theorem 1.1 be generalized to
any toric manifold? An intitial test case is whether it holds for generalized Bott manifolds. Does
knowing that the homotopy type of a Bott manifold is determined by its integral cohomology
ring imply that the diffeomorphism type is also determined? These questions and more deserve
further investigation.

2. Some properties of Bott manifolds

In this section we describe some properties of Bott manifolds which will be used to prove
Theorem 1.1. Note that we do not localize in this section. We begin with some general information.
Unless otherwise stated, cohomology is taken with Z coefficients. Let B,, be a Bott manifold
of height n. As in [6], the generators in cohomology can be chosen so that there is an isomorphism

H*(By) 2 Zlx1,...,xy]/ ~
where each xy, is of degree 2, and the relations are 3 = 0 and for 1 < k < n,

2 k—1
T = L1 Qi i @ T,
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for some coefficients a; € Z. In particular, observe that H*(B,,) is concentrated in even degrees,
and that each relation is a linear combination of degree 4 elements. Let (By,)4 be the 4-skeleton
of By,. Then the description of H*(B,,) implies that (B,,)4 consists of one zero-cell, n two-cells,
and m four-cells, where m = (g) So there is a cofibration

\/ Sg i> \/ 52 — (Bn)(4)
j=1 i=1
for some map f.

Baues considered CW-complexes consisting of only 2-cells and 4-cells in generality. A (2,4)-
complex is a CW-complex C' which is the mapping cone of a map

a: \77 R \”/ S?
i=1 i=1

for some integers m and n. Baues [1, Proposition 1.2.3| proved the following.

Proposition 2.1. Let C' and C’ be two (2,4)-complexes with corresponding attaching maps
a and a'. Then the following are equivalent:

(a) there is a ring isomorphism H*(C) = H*(C");
(b) the attaching maps a and a' are homotopic;
(c) there is a homotopy equivalence C ~ C'.

In our case, observe that if Bj, is a Bott manifold then its 4-skeleton (By,)4 is a (2, 4)-complex.
As a consequence of Proposition 2.1 we obtain the following.

Lemma 2.2. Let B, and B], be Bott manifolds. Then the following are equivalent:
(a) there is a ring isomorphism H*(B,) = H*(B));
(b) there is a ring isomorphism H*((By)4) = H*((B.)4);
(c) there is a homotopy equivalence (By)s ~ (B)4.

Proof. Part (a) clearly implies part (b), and parts (b) and (c) are equivalent by Proposi-
tion 2.1. It remains to show that part (b) implies part (a). Let s: H*((By,)1) — H*((B},)4) be
a ring isomorphism. Note that this is an isomorphism on the degree 2 and degree 4 cohomology
of B, and B,. Since the generators of H*(B,,) and H*(B],) are in degree 2 and the relations
are in degree 4, by multiplicatively extending s we obtain a ring homomorphism o: H*(B,) —
H*(B},). Since s induces an isomorphism of generating sets, the same is true of o. Therefore as
o is a ring homomorphism, it must be a ring isomorphism. U

Next, we establish a homotopy decomposition.

Lemma 2.3. Let B, be a Bott manifold of height n. For 1 < k < n, each fibration S* —
By =% By_1 in the tower has the property that m, has a right homotopy inverse. Consequently,
there is a homotopy equivalence

OB, ~ ﬁ 052,
=1

Proof. Recall that B, is defined as a sequence of manifolds

Tn—1 .
B, ﬂ)Bn,1 — l>Bl £>Bozp01nt
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where By = P(C @ (j_1) is the projectivization of a complex line bundle (x_1 over Bx_1 and a
trivial line bundle C. At each stage of the sequence there is a fibration S? — By, % Bir_i. The
map 7 has a section given by restricting C to the +1 fibre. The existence of this section implies
that after looping there is a homotopy equivalence QB ~ Q5% x QBy,_;. Since By = 52, if we
inductively assume that QBp_1 ~ Hi:ll 52, then we obtain QB}, ~ Hle 052, The lemma now
follows by induction. O

It will be useful to regard B,, as a CW-complex and filter it by its skeleta. Recall that H*(B,,)
is concentrated in even degrees, specifically, in degrees 2k for 1 < k < n. For 1 < k < n, let
M, be the 2k-skeleton of B,. Then M; = \/}_; S2. M, = B, and for 1 < k < n — 1, there are
cofibrations

Sk
\/‘S2k+1 4ﬁ$ A4k — A4k+1
i=1
where s = (kﬁl) is the number of vector space generators of H***2 and f;, is the map attaching
the (2k + 2)-cells to B,,.
Let my: M — B, be the skeletal inclusion. Define the space @ and the map @ by the

homotopy fibration
Qr 25 My 75 B,

We determine some properties of this fibration.

Lemma 2.4. For 1 < k < n, the map QM 2y OB, has a right homotopy inverse.
Consequently, there is a homotopy equivalence QXM ~ QB X QQy.

Proof. First consider m;. We begin by constructing a different map J: /], S? — B, with
the property that €2J has a right homotopy inverse, and then compare J to mj. Start with the

fibration S2 B, = B,_1. By Lemma 2.3, i, has a left homotopy inverse r,,: QB,, — Q52

Let j, = i,. Next, consider the fibration G52 B,_1 ™ By,—2. Since 7, has a section, ¢,,_ lifts
to a map jnp_1: S — B,,. By Lemma 2.3, Qi,_1 has a left homotopy inverse. Therefore 24,1
has a left homotopy inverse 7,_1: QB, — 5% which factors through Qm,. In particular,
observe that r,_1 o 7, is null homotopic since it factors through Qm, o Qj, = Qm, o Qiy,
and the latter composite is two consecutive maps in a homotopy fibration. Now iterate for

1 < k < n— 1. Consider the fibration S% % Bj, —* By_;. Since each map in the composite
gr: B I Bho1 i AR By LN By, has a section, we obtain a section By — B, for
gk, implying that i, lifts to a map jr: S — B,. By Lemma 2.3, Qi;, has a left homotopy
inverse. Thus €j;, has a left homotopy inverse ry,: QB,, — Q52 which factors through Qg. In
particular, r; o 2j is null homotopic for each k& <[ < n.

Taking the wedge sum of the maps jy, for 1 < k < n we obtain a map J: \/I_; S? — B,,. Let
tp: 52 — Vi, S? be the inclusion of the k"-wedge summand. Observe that J o t;, ~ ji. After
looping the maps ¢ can be multiplied to give a map T: [[}_; 25% — Q(Vi-, S?). Taking the
product of the maps Qry, we obtain a map R: 2B, — [[;_; 252 The fact that r o Qjj, is a
homotopy equivalence while r; 0 Q5 ~ x for k < [ < n implies that the composite

ﬁ as? 5 a(\/ s?) L aB, 5 f[ 052
k=1 s k=1

is a homotopy equivalence. Thus 2J has a right homotopy inverse.

Finally observe that as each i induces the projection onto a generator in cohomology, the
map J, which lifts all the i;’s to B,,, induces an isomorphism on H?2. Thus, up to a self-equivalence
of /I, S?, J is homotopic to the inclusion m; of the 2-skeleton into B,,. Therefore as (2m; has
a right homotopy inverse, so does 2J.
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The remaining cases are easier. Consider the skeletal inclusion M —% B,. Observe that
the skeletal inclusion \/?:1 S2 = My 2% B,, factors through the skeletal inclusion Mj Tk, B,.
Since Q1 has a right homotopy inverse 2B, — QMj, the composite 2B, — QM; — QM
is a right homotopy inverse for Qmy. O

Our last task in this section is to relate the fibration Q) 2Ee My, 5 B, to the cofibration
ik, 2kt ELN My, — My 1. We exclude the k = n case as M, = B, so Q, =~ .

Lemma 2.5. For 1 < k < mn, there is a homotopy commutative diagram

Sk 2k+1
VL, S

S

Qp — 22— M,

where A\ induces an isomorphism on Tog1.

Proof. Consider the following diagram

\/1821 Szk+1 & Mk Mk+1
R
Qp —2— M, "> B,

where the map Ay is to be defined momentarily. The right square commutes since all the maps are
skeletal inclusions. As the top row is a homotopy cofibration and the bottom row is a homotopy
fibration, the composite myo fy, is null homotopic, so f lifts through ¢y to a map Ag: \/ S+ —
Q. Thus the entire diagram homotopy commutes. Note that the homotopy class of Ay is uniquely
determined, since any two choices would have a difference which lifted through the fibration
connecting map (2B, — Q, but this map is null homotopic by Lemma 2.4. The Blakers-
Massey Theorem implies that the cofibration along the top row and the fibration along the
bottom row are equivalent in dimensions < 2k -+ 1. But it is dimension 2k + 1 that we care about,
so we need to look more closely at how the two rows compare in this boudary dimension.

We will compare long exact sequences induced by the cofibration along the top and bottom
rows of (1). First, let ¢: My1 — /3%, S?**2 be the cofibration connecting map. The homotopy
cofibration along the top row in (1) induces a long exact sequence

Sk
5
+oo — Hopya(Miy1) — Hopr1(\/ S™H) — Hopyr (M) — Happr (Mysr) — -+

i=1
where 0 is the connecting map. Explicitly, ¢ is the composite

Sk Sk

Hopyo(Mys1) = Hopyo(\/ S%72) - Hopa(\/ %)
i=1 i=1

where the right map is the inverse to the suspension map.

Next, consider the homotopy fibration @y Zhe My, % B,. Notice that as H* (By) is
concentrated in even degrees, the fact that Mj is the 2k-skeleton of B, means that it also
the (2k + 1)-skeleton. Thus a Serre spectral sequence calculation immediately shows that Q is
2k-connected. So as B, is 1-connected, the Serre exact sequence for this fibration is of the form

P
Hopi2(Qr) — Hopyo(My) — Hopyo(Brn) — Hopt1(Qr) — Hopp1(My) — - -
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where 0 is the boundary map. The map 0 is the transgression in the Serre spectral sequence,
which in this case can be made explicit as follows. Restrict By, to its (2k + 2)-skeleton M. As
H*(B,,) is concentrated in even degrees, so is its dual H,(B,,). In particular, Hox13(B,) = 0, so
the skeletal inclusion M, Jlar B,, induces an isomorphism on Hogyo. Thus 0 is determined
by the composite Hogyo(Mgi1) LN Horra(ViE, S2h+2) =, Hop1(ViE, S%k+1) where the right
map is the inverse to the suspension map. In particular, 9 = 4.

Hence the morphism of long exact sequences in homology induced by (1) is actually an
equivalence in dimensions < 2k + 1. Thus Ay, induces an isomorphism in Hay 1. Since \/i*, S2F+1
and Qi are both 2k-connected, the Hurewicz Theorem therefore implies that Ap induces an
isomorphim on mogy1. |

3. Some localized properties of Bott manifolds

Recall that P is the set consisting of the first [ primes, and R; is the ring of integers localized
away from Fj;. We begin with a localized version of Proposition 2.1, which is a straightforward
consequence of [1, Theorem 1.3.8].

Proposition 3.1. Let C and C’ be two (2,4)-complexes with corresponding attaching maps
a and a'. Then the following are equivalent:

(a) there is a ring isomorphism H*(C; R;) = H*(C'; Ry);
(b) localized away from Py, the attaching maps a and a' are homotopic

(c) localized away from Py, there is a homotopy equivalence C ~ C'.

Note that as H*(B,,) is torsion-free, so is H*(By,; R;). Therefore, arguing just as in Lemma 2.2,
we obtain the following.

Lemma 3.2. Let B, and B}, be Bott manifolds. Then the following are equivalent:
(a) there is a ring isomorphism H*(B,; R;) = H*(B,; R;);
(b) there is a ring isomorphism H*((By)a; Ry) = H*((B))4; Ry);

(¢) localized away from Py, there is a homotopy equivalence (By)4 =~ (B)4.

Next, we turn to the homotopy groups of Bott manifolds. We begin integrally. The homotopy
decomposition in Lemma 2.3 immediately implies the following.

Corollary 3.3. Let B, be a Bott manifold of height n. Then for each m > 1 there is an
isomorphism m,(Bp) & &% 7,,(S?).

Next, we recall some information about the homotopy groups of S2. Classically, Serre showed
that there is a homotopy equivalence Q25? ~ S x 083, Consequently, since S! is the Eilenberg-
MacLane space K(Z,1), we obtain an isomorphism 7,,(S?) & 7,,(S%) for every m > 2. In
particular, 73(5?) & 713(S%) = Z, and ,,(S?) is a torsion group for every m > 3. These torsion
groups were calculated through a range by Toda |7, 8]. Let p be a prime. Then for 3 < m < 4p—3

the p-component of 7,,(S%) is as follows:

Z/pZ m =2p,4p —3

3 ~
™m (%) ) = { 0 otherwise. @

We now use Toda’s calculations to obtain the following statement about the odd dimensional
homotopy groups of 52,
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Lemma 3.4. Localize away from Py, If 3 < 2m + 1 < 4p41 — 3 then m2,41(S?) = 0.

Proof. For any prime p, by (2) the least dimensional nonvanishing homotopy group of S3
occurs in dimension 2p, and the least dimensional nonvanishing homotopy group of S in an
odd dimension occurs in dimension 4p — 3. So if we localize away from F;, the least dimensional
nonvanishing homotopy group of S® in an odd dimension occurs in dimension 4p;y; — 3. The
lemma now follows from the fact that 7 (S?) = 74 (S3) for any k > 2. O

Let B, be a Bott manifold of height n. By Corollary 3.3, for any m > 3 there is an
isomorphism 7, (By,) & &% 7, (S5?). Hence Lemma 3.4 immediately implies the following.

Lemma 3.5. Let B, be a Bott manifold of height n. Localize away from P;. If 3 <2m+1 <
4dpi11 — 3 then mom+1(By,) = 0.

Note that the condition on homotopy groups in Lemma 3.5 holds for any n. In the next
Lemma the dimension of B, does play a role. Recall the homotopy fibration Ry, RAN M, =% B,
induced by including the 2k-skeleton M}, into B,,.

Corollary 3.6. Localize away from P;. If n < 2p;y1 — 1 then for any 2 < k < n, the map
Q. LN My, induces an isomorphism on mopy1.

Proof. As2 <k <n-—1,wehave 3 <2k+1 < 2n—1. Since n < 2p;41 — 1, we have
2n — 1 < 4p;11 — 3. Thus Lemma 3.5 implies that mop11(B,) = 0. Therefore the homotopy
equivalence QM ~ QB,, x QQ} in Lemma 2.4 implies that mog1(Rk) = mor+1(My), with the
isomorphism induced by . ([

Combining Lemma 2.5 and Corollary 3.6 we immediately obtain the following.

Corollary 3.7. Localize away from P;. If n < 2p;41 — 1 then for any 2 < k < n, the map

\/fi1 G2k+1 ﬂ) My, induces an isomorphism oy 1.

4. The proof of Theorem 1.1

We now combine the results of the previous two sections to prove Theorem 1.1.

Proof of Theorem 1.1. Fix n and let p;41 be the smallest prime > "T‘H Localize spaces away

from Pj.
Part (b) implies part (a). This is clear, since a homotopy equivalence B, ~ B
isomorphism H*(B, : R;) = H*(By; R)).

Part (a) implies part (b). Suppose that H*(B,; R;) = H*(B]; R;). By Lemma 3.2, this implies
that there is a homotopy equivalence (By)s — (B}, )4. In terms of the skeletal filtrations on
B, and B],, we have a homotopy equivalence go: My — MJ. Assume inductively that there

ns

induces an

is a homotopy equivalence My Iy M 1~ We wish to show that there is a homotopy equivalence

M1 25 M j1- 1f 0, then by induction we obtain a homotopy equivalence B, = M, I M=
B!, proving the theorem.

To counstruct gg41, for each 1 < k < n—1, we will show that there is a homotopy commutative
diagram

Vi G2k+1 L M,

|n i 3)
I

Sk 2k+1 /
\/i 1 S Mk
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where hj is a homotopy equivalence. Granting this, we obtain a homotopy cofibration diagram

f
vfil S2k+1 - Mk Mk+1
\Lhk \Lgk lgkjtl
\/fil S2k+1 Fi ME M]’g

for some induced map gr4+1 of cofibres. This cofibration diagram induces a morphism of long
exact sequences of homology groups. Since hy and g are homotopy equivalences, they induce
isomorphisms in homology. So when the five-lemma is applied to the morphism of long exact
sequences of homology groups, we obtain that (gxs+1)« is also an isomorphism. Hence gxy1 is a
homotopy equivalence.

It remains to show the existence of (3) for each 2 < k < n — 1. Fix k and consider the

composite \/ S2F+1 S, M, 25 M Ty BJ,. By hypothesis, n < 2p;11 — 1. So Corollary 3.6

implies that the fibre Q) e M .. of m) induces an isomorphism on 7o41. That is, mj, induces
the zero map on mai4+1. Thus mg o gx o fi. is null homotopic. Therefore we obtain a lift

Vi, G2k+1 L M,

\L’Yk \Lgk
’ ’

Pk mi
/ /
Qs M,

ne

for some map 7. Since v, represents a homotopy class in mo,11(Q},) and Lemma 2.5 states
)\/
that the map \/j£, S?**1 ~% @) induces an isomorphism on o1, we have 7y factoring as a
. h A :
composite /3%, G2k+1 Zhy \/f:1 S2k+L Tk Q). for some map hy. By Lemma 2.5, the composite

)\/ /
Vit S2k+1 Tk, Q% LN M, is homotopic to f;. Thus the previous homotopy commutative

diagram can be refined to a homotopy commutative diagram
\/3k, G2+ LN M,
Jo @

hki
fx

\/?k L 52k+1 M]é
il — M.
Applying mox 41 to (4) we obtain a commutative diagram

s Jr)=
okt (Ve 52 U Tok+1(My)

Skl S%H) Lk)* 7T2k+l(Mllc)'

™ 2k+1(\/i:
By Corollary 3.7 both (fx)« and (f,)« are isomorphisms. By inductive hypothesis, g is a
homotopy equivalence so (gi)« is an isomorphism. The commutativity of the diagram therefore
implies that (hg)s is also an isomorphism. Hence hy is a homotopy equivalence. Therefore (4)
establishes the k > 2 case of (3), as required, thereby completing the induction. U
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Tepuo C. Tomoronuyeckoe CBOHCTBO KECTKOCTH Jijist MHOroobpasuit  Borra.
HanbaeBocTounblil Maremarndeckuii xxypuas. 2012. T. 12. Ne 1. C. 89-97.

AHHOTAITIS

I'umoresa KECTKOCTM B TOPUYIECKOW TOMOJIOTUU yTBEPKIAET, UTO JIBA TOPUIECKUX
MHOTOOOpasust JauddeoMopdHbl TOra W TOJABKO TOrJA, KOLJA UX KOJbIA
[IE€JIOYNCIEHHBIX KOTOMOJIOTHHM n30MOPGHBI KaK I'PalynPOBAHHbBIE KOJIBIA. | nmore3a
JIOKa3aHa JINIIb JIjId HEKOTOPBIX CJIyYaeB MaJjioll pazmepHocTu. MbI paccMaTpuBaem
oC/Ia0JIEHHBINT BAapWAHT THUIIOTE3bI, B KOTOpOoM muddeomopdusm 3amMeHsiercd Ha
FOMOTOIUYECKYIO SKBUBAJEHTHOCTh, U TOKA3bIBAEM, UTO B 3TOI 0C/1ab/IeHHOM BEPCUHT
TUATIOTE3a BEPHA JJIsi MHOr0obpas3nit BorTa, ecyim 00paTuTh TOCTATOIHOE KOJUIECTBO
TTPOCTHIX YHCEJI. B YaCTHOCTH, MBI TTIOKA3bIBa€M, 9TO pa]_[I/IOHaJIBHbeI TOMOTOTIUYECKUIA
™I MHOT00Opasus BoTTa onpeeisteTcst ero pannoHAJIBHBIM KOJTBIIOM KOTOMOJIOTHIA.
MaTepI/IaﬂbI CTaTh CBOUM IIOAdBJIEHUEM O65{3&HI)I AUCKYCCUAM, TIPOXOAUBIITUM
ua Mexaynaponuoit koudepenrun «Topuwdeckas TOTOMOTUA U aBTOMODPQHBIE
dynkmuny (5-10 centsiops 2011 r., r. Xabaposck, Poccust).
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