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c⃝ Stephen Theriault1

A homotopy-theoretic rigidity property

of Bott manifolds

The rigidity conjecture in toric topology posits that two toric manifolds are di�eomorphic
if and only if their integral cohomology rings are isomorphic as graded rings. Only a few
low dimensional cases have been resolved. We weaken the conjecture to one concerning
homotopy type rather than di�eomorphism, and show that the weaker conjecture holds for
Bott manifolds, once enough primes have been inverted. In particular, show that the rational
homotopy type of a Bott manifold is determined by its rational cohomology ring.

The material in this paper was inspired by the mathematics discussed at the International
conference ¾Toric Topology and Automorphic Functions¿ (September, 5-10th, 2011, Khaba-
rovsk, Russia).
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1. Introduction

There has been a great deal of interest recently in the rigidity of toric manifolds. A toric

variety X of dimension n is a normal complex algebraic variety with an action of an n-dimensional
algebraic torus (C∗)n having a dense orbit. A toric manifold is a compact smooth toric variety.
Masuda [5] showed that the variety type of a toric manifold is determined by its equivariant
cohomology algebra over H∗(B(C∗)n). Following this it was natural to ask to what extent the
di�eomorphism type of the manifold is distinguished by ordinary cohomology.

The rigidity conjecture: Two toric manifolds are di�eomorphic if and only if their integral
cohomology rings are isomorphic as graded rings.

Some partial results have been obtained in the case when the toric manifold is a Bott manifold
or a generalized Bott manifold. A Bott tower of height n is a sequence of manifolds

Bn
πn−→ Bn−1

πn−1−→ · · · π1−→ B1
π0−→ B0 = point

where Bk = P (C⊕ ζk−1) is the projectivization of a complex line bundle ζk−1 over Bk−1 and a
trivial line bundle C, and the �bre of each map πk for 1 ≤ k ≤ n is S2. A Bott manifold of height
n is the total space Bn in a Bott tower. A generalized Bott tower is a sequence of manifolds as
above where Bk is the projectivization of a Whitney sum of complex line bundles, and the �bre
at each stage is CPnk for some nonnegative integer nk. The total space Bn is a generalized Bott

manifold.
Masuda and Panov [6] showed that in the case of a Bott manifold, if H∗(Bn) ∼= H∗(

∏n
i=1 S

2)
then Bn is di�eomorphic to

∏n
i=1 S

2. Choi, Masuda and Suh [3] improved this to the case of

1 Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom. E-mail:

s.theriault@abdn.ac.uk

89



generalized Bott manifolds: if H∗(Bn) ∼= H∗(
∏n

i=1CPni) then Bn is di�eomorphic to
∏n

i=1CPni .
For the non-product cases, in [3] it was shown that the rigidity conjecture holds for generalized
Bott manifolds of height 2 and for Bott manifolds of height 3, and it has recently been announced
by Choi [2] that the conjecture also holds for Bott manifolds of height 4. A thorough discussion
of progress to date can be found in [4].

In this paper we consider a weaker version of the rigidity conjecture.

The homotopy-theoretic rigidity conjecture: Two toric manifolds are homotopy equivalent
if and only if their integral cohomology rings are isomorphic as graded rings.

There are advantages in weakening from a di�eomorphism to a homotopy equivalence. A
positive answer in the homotopy-theoretic case would give strong evidence for a positive answer
in the di�eomorphism case. A negative answer in the homotopy-theoretic case implies a negative
answer in the di�eomorphism case. Further, the case-by-case progress to date in the di�eomorphism
rigidity conjecture is ad hoc. We will obtain systematic results for the homotopy-theoretic rigidity
conjecture.

We prove the following. Let p1, . . . , pl, . . . be the primes in N, listed in increasing order. Let
Pl = {p1, . . . , pl}. Let Rl be the ring of integers localized away from Pl.

Theorem 1.1. Let Bn and B′
n be Bott manifolds of height n. Suppose that all spaces and

maps are localized away from Pl. If n < 2pl+1 − 1, then the following are equivalent:

(a) there is a ring isomorphism H∗(Bn;Rl) ∼= H∗(B′
n;Rl);

(b) there is a homotopy equivalence Bn ≃ B′
n.

Theorem 1.1 implies that the homotopy-theoretic rigidity conjecture holds for Bott manifolds,
provided enough primes have been inverted. The localization hypothesis is convenient but may
not necessary. It is used to eliminate potential obstructions in constructing a homotopy equivalence
Bn ≃ B′

n given an isomorphismH∗(Bn;Rl) ∼= H∗(B′
n;Rl). It is useful to observe that Theorem 1.1

implies that the homotopy-theoretic rigidity conjecture holds for n ≤ 4 provided 2 is inverted, and
it holds for n ≤ 8 provided both 2 and 3 are inverted. More emphatically, Theorem 1.1 implies
that the homotopy-theoretic rigidity conjecture holds rationally: there is a rational homotopy
equivalence Bn ≃ B′

n if and only if there is an isomorphism of graded rings H∗(Bn : Q) ∼=
H∗(B′

n : Q).
The positive result in Theorem 1.1 raises many questions. Can the hypothesis regarding

localization away from Pl be removed? As this may be di�cult, perhaps a starting point is to ask
whether the dimensional range n < 2pl+1−1 can be improved. Can Theorem 1.1 be generalized to
any toric manifold? An intitial test case is whether it holds for generalized Bott manifolds. Does
knowing that the homotopy type of a Bott manifold is determined by its integral cohomology
ring imply that the di�eomorphism type is also determined? These questions and more deserve
further investigation.

2. Some properties of Bott manifolds

In this section we describe some properties of Bott manifolds which will be used to prove
Theorem 1.1. Note that we do not localize in this section. We begin with some general information.

Unless otherwise stated, cohomology is taken with Z coe�cients. Let Bn be a Bott manifold
of height n. As in [6], the generators in cohomology can be chosen so that there is an isomorphism

H∗(Bn) ∼= Z[x1, . . . , xn]/ ∼

where each xk is of degree 2, and the relations are x21 = 0 and for 1 < k ≤ n,

x2k = Σk−1
i=1 ai,kxi ⊗ xk

90



for some coe�cients ai.k ∈ Z. In particular, observe that H∗(Bn) is concentrated in even degrees,
and that each relation is a linear combination of degree 4 elements. Let (Bn)4 be the 4-skeleton
of Bn. Then the description of H∗(Bn) implies that (Bn)4 consists of one zero-cell, n two-cells,
and m four-cells, where m =

(
n
2

)
. So there is a co�bration

m∨
j=1

S3 f−→
n∨

i=1

S2 −→ (Bn)(4)

for some map f .
Baues considered CW -complexes consisting of only 2-cells and 4-cells in generality. A (2, 4)-

complex is a CW -complex C which is the mapping cone of a map

a :

m∨
i=1

S3 −→
n∨

i=1

S2

for some integers m and n. Baues [1, Proposition 1.2.3] proved the following.

Proposition 2.1. Let C and C ′ be two (2, 4)-complexes with corresponding attaching maps

a and a′. Then the following are equivalent:

(a) there is a ring isomorphism H∗(C) ∼= H∗(C ′);

(b) the attaching maps a and a′ are homotopic;

(c) there is a homotopy equivalence C ≃ C ′.

In our case, observe that if Bn is a Bott manifold then its 4-skeleton (Bn)4 is a (2, 4)-complex.
As a consequence of Proposition 2.1 we obtain the following.

Lemma 2.2. Let Bn and B′
n be Bott manifolds. Then the following are equivalent:

(a) there is a ring isomorphism H∗(Bn) ∼= H∗(B′
n);

(b) there is a ring isomorphism H∗((Bn)4) ∼= H∗((B′
n)4);

(c) there is a homotopy equivalence (Bn)4 ≃ (B′
n)4.

P r o o f. Part (a) clearly implies part (b), and parts (b) and (c) are equivalent by Proposi-
tion 2.1. It remains to show that part (b) implies part (a). Let s : H∗((Bn)4) −→ H∗((B′

n)4) be
a ring isomorphism. Note that this is an isomorphism on the degree 2 and degree 4 cohomology
of Bn and B′

n. Since the generators of H
∗(Bn) and H∗(B′

n) are in degree 2 and the relations
are in degree 4, by multiplicatively extending s we obtain a ring homomorphism σ : H∗(Bn) −→
H∗(B′

n). Since s induces an isomorphism of generating sets, the same is true of σ. Therefore as
σ is a ring homomorphism, it must be a ring isomorphism. �

Next, we establish a homotopy decomposition.

Lemma 2.3. Let Bn be a Bott manifold of height n. For 1 ≤ k ≤ n, each �bration S2 −→
Bk

πk−→ Bk−1 in the tower has the property that πk has a right homotopy inverse. Consequently,

there is a homotopy equivalence

ΩBn ≃
n∏

i=1

ΩS2.

P r o o f. Recall that Bn is de�ned as a sequence of manifolds

Bn
πn−→ Bn−1

πn−1−→ · · · π1−→ B1
π0−→ B0 = point
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where Bk = P (C⊕ ζk−1) is the projectivization of a complex line bundle ζk−1 over Bk−1 and a

trivial line bundle C. At each stage of the sequence there is a �bration S2 −→ Bk
πk−→ Bk−1. The

map πk has a section given by restricting C to the +1 �bre. The existence of this section implies
that after looping there is a homotopy equivalence ΩBk ≃ ΩS2 × ΩBk−1. Since B1 = S2, if we
inductively assume that ΩBk−1 ≃

∏k−1
i=1 ΩS2, then we obtain ΩBk ≃

∏k
i=1ΩS

2. The lemma now
follows by induction. �

It will be useful to regard Bn as a CW -complex and �lter it by its skeleta. Recall that H∗(Bn)
is concentrated in even degrees, speci�cally, in degrees 2k for 1 ≤ k ≤ n. For 1 ≤ k ≤ n, let
Mk be the 2k-skeleton of Bn. Then M1 =

∨n
i=1 S

2, Mn = Bn, and for 1 ≤ k ≤ n − 1, there are
co�brations

sk∨
i=1

S2k+1 fk−→ Mk −→ Mk+1

where sk =
(

n
k+1

)
is the number of vector space generators of H2k+2, and fk is the map attaching

the (2k + 2)-cells to Bn.
Let mk : Mk −→ Bn be the skeletal inclusion. De�ne the space Qk and the map φk by the

homotopy �bration
Qk

φk−→ Mk
mk−→ Bn.

We determine some properties of this �bration.

Lemma 2.4. For 1 ≤ k ≤ n, the map ΩMk
Ωmk−→ ΩBn has a right homotopy inverse.

Consequently, there is a homotopy equivalence ΩMk ≃ ΩBn × ΩQk.

P r o o f. First considerm1. We begin by constructing a di�erent map J :
∨n

i=1 S
2 −→ Bn with

the property that ΩJ has a right homotopy inverse, and then compare J to m1. Start with the

�bration S2 in−→ Bn
πn−→ Bn−1. By Lemma 2.3, Ωin has a left homotopy inverse rn : ΩBn −→ ΩS2.

Let jn = in. Next, consider the �bration S2 in−1−→ Bn−1
πn−1−→ Bn−2. Since πn has a section, in−1 lifts

to a map jn−1 : S
2 −→ Bn. By Lemma 2.3, Ωin−1 has a left homotopy inverse. Therefore Ωjn−1

has a left homotopy inverse rn−1 : ΩBn −→ ΩS2 which factors through Ωπn. In particular,
observe that rn−1 ◦ Ωjn is null homotopic since it factors through Ωπn ◦ Ωjn = Ωπn ◦ Ωin,
and the latter composite is two consecutive maps in a homotopy �bration. Now iterate for

1 ≤ k < n − 1. Consider the �bration S2 ik−→ Bk
πk−→ Bk−1. Since each map in the composite

gk : Bn
πn−→ Bn−1

πn−1−→ · · ·
πk+1−→ Bk+1

πk−→ Bk has a section, we obtain a section Bk −→ Bn for
gk, implying that ik lifts to a map jk : S

2 −→ Bn. By Lemma 2.3, Ωik has a left homotopy
inverse. Thus Ωjk has a left homotopy inverse rk : ΩBn −→ ΩS2 which factors through Ωgk. In
particular, rl ◦ Ωjk is null homotopic for each k < l ≤ n.

Taking the wedge sum of the maps jk for 1 ≤ k ≤ n we obtain a map J :
∨n

i=1 S
2 −→ Bn. Let

tk : S
2 −→

∨n
i=1 S

2 be the inclusion of the kth-wedge summand. Observe that J ◦ tk ≃ jk. After
looping the maps tk can be multiplied to give a map T :

∏n
k=1ΩS

2 −→ Ω(
∨n

i=1 S
2). Taking the

product of the maps Ωrk we obtain a map R : ΩBn −→
∏n

k=1ΩS
2. The fact that rk ◦ Ωjk is a

homotopy equivalence while rl ◦ Ωjk ≃ ∗ for k < l ≤ n implies that the composite

n∏
k=1

ΩS2 T−→ Ω(

n∨
i=1

S2)
J−→ ΩBn

R−→
n∏

k=1

ΩS2

is a homotopy equivalence. Thus ΩJ has a right homotopy inverse.
Finally observe that as each ik induces the projection onto a generator in cohomology, the

map J , which lifts all the ik's to Bn, induces an isomorphism onH2. Thus, up to a self-equivalence
of

∨n
i=1 S

2, J is homotopic to the inclusion m1 of the 2-skeleton into Bn. Therefore as Ωm1 has
a right homotopy inverse, so does ΩJ .
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The remaining cases are easier. Consider the skeletal inclusion Mk
mk−→ Bn. Observe that

the skeletal inclusion
∨n

i=1 S
2 = M1

m1−→ Bn factors through the skeletal inclusion Mk
mk−→ Bn.

Since Ωm1 has a right homotopy inverse ΩBn −→ ΩM1, the composite ΩBn −→ ΩM1 −→ ΩMk

is a right homotopy inverse for Ωmk. �
Our last task in this section is to relate the �bration Qk

φk−→ Mk
mk−→ Bn to the co�bration∨sk

i=1 S
2k+1 fk−→ Mk −→ Mk+1. We exclude the k = n case as Mn = Bn so Qn ≃ ∗.

Lemma 2.5. For 1 ≤ k < n, there is a homotopy commutative diagram∨sk
i=1 S

2k+1

fk
��

λk

yyttt
ttt

ttt
t

Qk
φk // Mk

where λk induces an isomorphism on π2k+1.

P r o o f. Consider the following diagram

∨sk
i=1 S

2k+1 fk //

λk

��

Mk
// Mk+1

mk+1

��
Qk

φk // Mk
mk // Bn

(1)

where the map λk is to be de�ned momentarily. The right square commutes since all the maps are
skeletal inclusions. As the top row is a homotopy co�bration and the bottom row is a homotopy
�bration, the compositemk◦fk is null homotopic, so fk lifts through φk to a map λk :

∨
S2k+1 −→

Qk. Thus the entire diagram homotopy commutes. Note that the homotopy class of λk is uniquely
determined, since any two choices would have a di�erence which lifted through the �bration
connecting map ΩBn −→ Qk, but this map is null homotopic by Lemma 2.4. The Blakers-
Massey Theorem implies that the co�bration along the top row and the �bration along the
bottom row are equivalent in dimensions < 2k+1. But it is dimension 2k+1 that we care about,
so we need to look more closely at how the two rows compare in this boudary dimension.

We will compare long exact sequences induced by the co�bration along the top and bottom
rows of (1). First, let q : Mk+1 −→

∨sk
i=1 S

2k+2 be the co�bration connecting map. The homotopy
co�bration along the top row in (1) induces a long exact sequence

· · · −→ H2k+2(Mk+1)
δ−→ H2k+1(

sk∨
i=1

S2k+1) −→ H2k+1(Mk) −→ H2k+1(Mk+1) −→ · · ·

where δ is the connecting map. Explicitly, δ is the composite

H2k+2(Mk+1)
q∗−→ H2k+2(

sk∨
i=1

S2k+2)
∼=−→ H2k+1(

sk∨
i=1

S2k+1)

where the right map is the inverse to the suspension map.
Next, consider the homotopy �bration Qk

φk−→ Mk
mk−→ Bn. Notice that as H∗(Bn) is

concentrated in even degrees, the fact that Mk is the 2k-skeleton of Bn means that it also
the (2k + 1)-skeleton. Thus a Serre spectral sequence calculation immediately shows that Qk is
2k-connected. So as Bn is 1-connected, the Serre exact sequence for this �bration is of the form

H2k+2(Qk) −→ H2k+2(Mk) −→ H2k+2(Bn)
∂−→ H2k+1(Qk) −→ H2k+1(Mk) −→ · · ·
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where ∂ is the boundary map. The map ∂ is the transgression in the Serre spectral sequence,
which in this case can be made explicit as follows. Restrict Bn to its (2k+2)-skeleton Mk+1. As
H∗(Bn) is concentrated in even degrees, so is its dual H∗(Bn). In particular, H2k+3(Bn) ∼= 0, so

the skeletal inclusion Mk+1
mk+1−→ Bn induces an isomorphism on H2k+2. Thus ∂ is determined

by the composite H2k+2(Mk+1)
q∗−→ H2k+2(

∨sk
i=1 S

2k+2)
∼=−→ H2k+1(

∨sk
i=1 S

2k+1) where the right
map is the inverse to the suspension map. In particular, ∂ = δ.

Hence the morphism of long exact sequences in homology induced by (1) is actually an
equivalence in dimensions ≤ 2k+1. Thus λk induces an isomorphism in H2k+1. Since

∨sk
i=1 S

2k+1

and Qk are both 2k-connected, the Hurewicz Theorem therefore implies that λk induces an
isomorphim on π2k+1. �

3. Some localized properties of Bott manifolds

Recall that Pl is the set consisting of the �rst l primes, and Rl is the ring of integers localized
away from Pl. We begin with a localized version of Proposition 2.1, which is a straightforward
consequence of [1, Theorem 1.3.8].

Proposition 3.1. Let C and C ′ be two (2, 4)-complexes with corresponding attaching maps

a and a′. Then the following are equivalent:

(a) there is a ring isomorphism H∗(C;Rl) ∼= H∗(C ′;Rl);

(b) localized away from Pl, the attaching maps a and a′ are homotopic

(c) localized away from Pl, there is a homotopy equivalence C ≃ C ′.

Note that asH∗(Bn) is torsion-free, so isH
∗(Bn;Rl). Therefore, arguing just as in Lemma 2.2,

we obtain the following.

Lemma 3.2. Let Bn and B′
n be Bott manifolds. Then the following are equivalent:

(a) there is a ring isomorphism H∗(Bn;Rl) ∼= H∗(B′
n;Rl);

(b) there is a ring isomorphism H∗((Bn)4;Rl) ∼= H∗((B′
n)4;Rl);

(c) localized away from Pl, there is a homotopy equivalence (Bn)4 ≃ (B′
n)4.

Next, we turn to the homotopy groups of Bott manifolds. We begin integrally. The homotopy
decomposition in Lemma 2.3 immediately implies the following.

Corollary 3.3. Let Bn be a Bott manifold of height n. Then for each m ≥ 1 there is an

isomorphism πm(Bn) ∼= ⊕n
i=1πm(S2).

Next, we recall some information about the homotopy groups of S2. Classically, Serre showed
that there is a homotopy equivalence ΩS2 ≃ S1 ×ΩS3. Consequently, since S1 is the Eilenberg-
MacLane space K(Z, 1), we obtain an isomorphism πm(S2) ∼= πm(S3) for every m > 2. In
particular, π3(S

2) ∼= π3(S
3) ∼= Z, and πm(S2) is a torsion group for every m > 3. These torsion

groups were calculated through a range by Toda [7, 8]. Let p be a prime. Then for 3 < m ≤ 4p−3
the p-component of πm(S3) is as follows:

πm(S3)(p) ∼=
{

Z/pZ m = 2p, 4p− 3
0 otherwise.

(2)

We now use Toda's calculations to obtain the following statement about the odd dimensional

homotopy groups of S2.
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Lemma 3.4. Localize away from Pl. If 3 < 2m+ 1 < 4pl+1 − 3 then π2m+1(S
2) ∼= 0.

P r o o f. For any prime p, by (2) the least dimensional nonvanishing homotopy group of S3

occurs in dimension 2p, and the least dimensional nonvanishing homotopy group of S3 in an
odd dimension occurs in dimension 4p− 3. So if we localize away from Pl, the least dimensional
nonvanishing homotopy group of S3 in an odd dimension occurs in dimension 4pl+1 − 3. The
lemma now follows from the fact that πk(S

2) ∼= πk(S
3) for any k > 2. �

Let Bn be a Bott manifold of height n. By Corollary 3.3, for any m > 3 there is an
isomorphism πm(Bn) ∼= ⊕n

i=1πm(S2). Hence Lemma 3.4 immediately implies the following.

Lemma 3.5. Let Bn be a Bott manifold of height n. Localize away from Pl. If 3 < 2m+1 <
4pl+1 − 3 then π2m+1(Bn) ∼= 0.

Note that the condition on homotopy groups in Lemma 3.5 holds for any n. In the next
Lemma the dimension of Bn does play a role. Recall the homotopy �bration Rk

φk−→ Mk
mk−→ Bn

induced by including the 2k-skeleton Mk into Bn.

Corollary 3.6. Localize away from Pl. If n < 2pl+1 − 1 then for any 2 ≤ k < n, the map

Qk
φk−→ Mk induces an isomorphism on π2k+1.

P r o o f. As 2 ≤ k ≤ n − 1, we have 3 < 2k + 1 ≤ 2n − 1. Since n < 2pl+1 − 1, we have
2n − 1 < 4pl+1 − 3. Thus Lemma 3.5 implies that π2k+1(Bn) ∼= 0. Therefore the homotopy
equivalence ΩMk ≃ ΩBn × ΩQk in Lemma 2.4 implies that π2k+1(Rk) ∼= π2k+1(Mk), with the
isomorphism induced by φk. �

Combining Lemma 2.5 and Corollary 3.6 we immediately obtain the following.

Corollary 3.7. Localize away from Pl. If n < 2pl+1 − 1 then for any 2 ≤ k < n, the map∨sk
i=1 S

2k+1 fk−→ Mk induces an isomorphism π2k+1.

4. The proof of Theorem 1.1

We now combine the results of the previous two sections to prove Theorem 1.1.

Proof of Theorem 1.1. Fix n and let pl+1 be the smallest prime > n+1
2 . Localize spaces away

from Pl.
Part (b) implies part (a). This is clear, since a homotopy equivalence Bn ≃ B′

n induces an
isomorphism H∗(Bn : Rl) ∼= H∗(Bn;Rl).

Part (a) implies part (b). Suppose that H∗(Bn;Rl) ∼= H∗(B′
n;Rl). By Lemma 3.2, this implies

that there is a homotopy equivalence (Bn)4 −→ (B′
n)4. In terms of the skeletal �ltrations on

Bn and B′
n, we have a homotopy equivalence g2 : M2 −→ M ′

2. Assume inductively that there

is a homotopy equivalence Mk
gk−→ M ′

k. We wish to show that there is a homotopy equivalence

Mk+1
gk+1−→ M ′

k+1. If so, then by induction we obtain a homotopy equivalence Bn = Mn
gn−→ M ′

n =
B′

n, proving the theorem.
To construct gk+1, for each 1 ≤ k ≤ n−1, we will show that there is a homotopy commutative

diagram ∨sk
i=1 S

2k+1 fk //

hk

��

Mk

gk

��∨sk
i=1 S

2k+1
f ′
k // M ′

k

(3)

95



where hk is a homotopy equivalence. Granting this, we obtain a homotopy co�bration diagram

∨sk
i=1 S

2k+1 fk //

hk

��

Mk
//

gk

��

Mk+1

gk+1

��∨sk
i=1 S

2k+1
f ′
k // Mk′ // M ′

k

for some induced map gk+1 of co�bres. This co�bration diagram induces a morphism of long
exact sequences of homology groups. Since hk and gk are homotopy equivalences, they induce
isomorphisms in homology. So when the �ve-lemma is applied to the morphism of long exact
sequences of homology groups, we obtain that (gk+1)∗ is also an isomorphism. Hence gk+1 is a
homotopy equivalence.

It remains to show the existence of (3) for each 2 ≤ k ≤ n − 1. Fix k and consider the

composite
∨

S2k+1 fk−→ Mk
gk−→ M ′

k

m′
k−→ B′

n. By hypothesis, n < 2pl+1 − 1. So Corollary 3.6

implies that the �bre Q′
k

φ′
k−→ M ′

k of m′
k induces an isomorphism on π2k+1. That is, m

′
k induces

the zero map on π2k+1. Thus mk ◦ gk ◦ fk is null homotopic. Therefore we obtain a lift

∨sk
i=1 S

2k+1 fk //

γk

��

Mk

gk

��
Q′

k

φ′
k // M ′

k

m′
k // B′

n.

for some map γk. Since γk represents a homotopy class in π2k+1(Q
′
k) and Lemma 2.5 states

that the map
∨sk

i=1 S
2k+1

λ′
k−→ Q′

k induces an isomorphism on π2k+1, we have γk factoring as a

composite
∨sk

i=1 S
2k+1 hk−→

∨k
i=1 S

2k+1
λ′
k−→ Q′

k for some map hk. By Lemma 2.5, the composite∨sk
i=1 S

2k+1
λ′
k−→ Q′

k

φ′
k−→ M ′

k is homotopic to f ′
k. Thus the previous homotopy commutative

diagram can be re�ned to a homotopy commutative diagram

∨sk
i=1 S

2k+1 fk //

hk

��

Mk

gk

��∨sk
i=1 S

2k+1
f ′
k // M ′

k.

(4)

Applying π2k+1 to (4) we obtain a commutative diagram

π2k+1(
∨sk

i=1 S
2k+1)

(fk)∗ //

(hk)∗
��

π2k+1(Mk)

(gk)∗
��

π2k+1(
∨sk

i=1 S
2k+1)

(f ′
k)∗ // π2k+1(M

′
k).

By Corollary 3.7 both (fk)∗ and (f ′
k)∗ are isomorphisms. By inductive hypothesis, gk is a

homotopy equivalence so (gk)∗ is an isomorphism. The commutativity of the diagram therefore
implies that (hk)∗ is also an isomorphism. Hence hk is a homotopy equivalence. Therefore (4)
establishes the k > 2 case of (3), as required, thereby completing the induction.
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ÀÍÍÎÒÀÖÈß

Ãèïîòåçà æ¼ñòêîñòè â òîðè÷åñêîé òîïîëîãèè óòâåðæäàåò, ÷òî äâà òîðè÷åñêèõ
ìíîãîîáðàçèÿ äèôôåîìîðôíû òîãäà è òîëüêî òîãäà, êîãäà èõ êîëüöà
öåëî÷èñëåííûõ êîãîìîëîãèé èçîìîðôíû êàê ãðàäóèðîâàííûå êîëüöà. Ãèïîòåçà
äîêàçàíà ëèøü äëÿ íåêîòîðûõ ñëó÷àåâ ìàëîé ðàçìåðíîñòè. Ìû ðàññìàòðèâàåì
îñëàáëåííûé âàðèàíò ãèïîòåçû, â êîòîðîì äèôôåîìîðôèçì çàìåíÿåòñÿ íà
ãîìîòîïè÷åñêóþ ýêâèâàëåíòíîñòü, è ïîêàçûâàåì, ÷òî â ýòîé îñëàáëåííîé âåðñèè
ãèïîòåçà âåðíà äëÿ ìíîãîîáðàçèé Áîòòà, åñëè îáðàòèòü äîñòàòî÷íîå êîëè÷åñòâî
ïðîñòûõ ÷èñåë. Â ÷àñòíîñòè, ìû ïîêàçûâàåì, ÷òî ðàöèîíàëüíûé ãîìîòîïè÷åñêèé
òèï ìíîãîîáðàçèÿ Áîòòà îïðåäåëÿåòñÿ åãî ðàöèîíàëüíûì êîëüöîì êîãîìîëîãèé.
Ìàòåðèàëû ñòàòüè ñâîèì ïîÿâëåíèåì îáÿçàíû äèñêóññèÿì, ïðîõîäèâøèì
íà Ìåæäóíàðîäíîé êîíôåðåíöèè ¾Òîðè÷åñêàÿ òîïîëîãèÿ è àâòîìîðôíûå
ôóíêöèè¿ (5-10 ñåíòÿáðÿ 2011 ã., ã. Õàáàðîâñê, Ðîññèÿ).
Êëþ÷åâûå ñëîâà: ìíîãîîáðàçèå Áîòòà, æ¼ñòêîñòü.


