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A Kernel Smoothing Method for

General Integral Equations

In this paper, we reduce the general linear integral equation of the third kind in L2(Y, µ), with
largely arbitrary kernel and coe�cient, to an equivalent integral equation either of the second
kind or of the �rst kind in L2(R), with the kernel being the linear pencil of bounded in�nitely
di�erentiable bi-Carleman kernels expandable in absolutely and uniformly convergent bilinear
series. The reduction is done by using unitary equivalence transformations.
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1. Introduction and Preliminaries

In the theory of general linear integral equations in L2 spaces, equations with bounded
in�nitely di�erentiable bi-Carleman kernels (termed K∞ kernels) should and do lend themselves
well to solution by approximation and variational methods. The question of whether a second-
kind integral equation with arbitrary kernel can be reduced to an equivalent one with a K∞

kernel was positively answered using a unitary-reduction method by the author [18]. In the
present paper, our goal is to extend the method in order to deal with a third-kind integral
equation ((1) below) with arbitrary measurable kernel and coe�cient.

Results obtained are presented with proofs in Section 2. The results say that the general
linear integral equation of the third kind in L2(Y, µ) can be reduced to an equivalent integral
equation either of the second kind (Theorem 3) or of the �rst kind (Theorem 4) in L2(R), with
the kernel being the linear pencil of K∞ kernels of Mercer type or of Hilbert-Schmidt K∞ kernels
of Mercer type, respectively. Before we can write down and prove our results, we need to �x the
terminology and notation and to give some de�nitions and preliminary material.

Throughout this paper, H is a separable, in�nite-dimensional Hilbert space with norm ∥ · ∥H
and inner product ⟨·, ·⟩H. (Y, µ) is a measure space Y equipped with a positive, σ-�nite, complete,
separable, and nonatomic, measure µ. L2(Y, µ) is the Hilbert space of (equivalence classes of)
µ-measurable complex-valued functions on Y equipped with the inner product ⟨f, g⟩L2(Y,µ) =∫
Y f(y)g(y) dµ(y) and the norm ∥f∥L2(Y,µ) = ⟨f, f⟩1/2

L2(Y,µ)
; when µ is the Lebesgue measure on

the real line R, L2(R, µ) is abbreviated into L2, and dµ(y) into dy. C(X,B), where B is a Banach
space with norm ∥ · ∥B, is the Banach space (with the norm ∥f∥C(X,B) = supx∈X ∥f(x)∥B) of
continuous B-valued functions de�ned on a locally compact space X and vanishing at in�nity

(that is, given any f ∈ C(X,B) and ε > 0, there exists a compact subset X(ε, f) ⊂ X such that
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∥f(x)∥B < ε whenever x ̸∈ X(ε, f)). A series
∑

n fn is B-absolutely convergent in C(X,B) if
fn ∈ C(X,B) (n ∈ N) and the series

∑
n ∥fn(x)∥B converges in C(X,R). Given an equivalence

class f ∈ L2 containing a function of C(R,C), the symbols [f ] and [f ](i) are used to denote that
function and its ith derivative, if exists. The symbols C and N refer to the complex plane and
the set of all positive integers, respectively.

Throughout, R(H) denotes the Banach algebra of all bounded linear operators acting on H.
For an operator T of R(H), T ∗ stands for the adjoint to T (w.r.t. ⟨·, ·⟩H), and the family M+(T )
is de�ned as the set of all those operators P ∈ R(H) that are positive (that is, ⟨Px, x⟩H ≥ 0
for all x ∈ H) and factorizable as P = TB or as P = BT with B ∈ R(H). A factorization
of an operator T ∈ R(H) into the product T = WV ∗ (where V , W ∈ R(H)) is called an
M factorization for T provided that V V ∗, WW ∗ ∈ M+(T ); cf. [21]. One example of an M
factorization for any T ∈ R (H) is obtained by letting W = UP , V = P , where P is the positive

square root of |T | := (T ∗T )
1
2 and U is the partially isometric factor in the polar decomposition

T = U |T |. (Indeed: T = WV ∗, WW ∗ = U |T |U∗ = TU∗ = UT ∗ ∈ M+(T ), and V V ∗ = |T | =
T ∗U = U∗T ∈ M+(T ).)

A bounded linear operator U : H → L2 is unitary if it has range L2 and ⟨Uf,Ug⟩L2 = ⟨f, g⟩H
for all f , g ∈ H. An operator S ∈ R(H) is unitarily equivalent to an operator T ∈ R

(
L2
)
if a

unitary operator U : H → L2 exists such that T = USU−1.
A linear operator T : L2(Y, µ) → L2(Y, µ) is integral if there is a complex-valued µ × µ-

measurable function T (kernel) de�ned on the Cartesian product Y 2 = Y × Y such that, for
each f in L2(Y, µ),

(Tf)(x) =

∫
Y
T (x, y)f(y) dµ(y) for µ-almost every x in Y ;

cf. [6], [9]. The integral operator T is bi-integral if its adjoint T ∗ is also an integral operator
on L2(Y, µ); cf. [9]. The integral and the bi-integral operators are bounded, and need not be
compact.

The general linear integral equation of the third kind in L2(Y, µ) is an equation of the form

H(x)ϕ(x)− λ

∫
Y
K(x, y)ϕ(y) dµ(y) = ψ(x) µ-almost everywhere on Y , (1)

where H : Y → C (the coe�cient of the equation) is a given bounded µ-measurable function,
K : Y 2 → C (the kernel of the equation) is a given kernel of a bi-integral operator K ∈
R
(
L2(Y, µ)

)
, the scalar λ ∈ C (a parameter) is given, the function ψ of L2(Y, µ) is given,

and the function ϕ of L2(Y, µ) is to be determined. When the coe�cient H has the constant
value 0 (resp. 1) µ-almost everywhere on Y , the general linear integral equation (1) is referred
to as of the �rst (resp. second) kind.

A bi-Carleman kernel T on Y 2 is a kernel for which∫
Y
|T (x, y)|2dµ(y) <∞,

∫
Y
|T (y, x)|2dµ(y) <∞ for µ-almost every x in Y .

A Hilbert-Schmidt kernel Γ on Y 2 is one for which∫
Y

∫
Y
|Γ (x, y)|2dµ(y) dµ(x) <∞.

A K∞ kernel T is a bi-Carleman kernel on R2, which is subject to the following in�nite
di�erentiability requirements:

(i) the function T and all its partial derivatives of all orders are in C
(
R2,C

)
,
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(ii) the (�rst) Carleman function t : R → L2, de�ned via T by t(s) = T (s, ·), and its (strong)
derivatives t(i) of all orders are in C

(
R, L2

)
,

(iii) the (second) Carleman function t′ : R → L2, de�ned via T by t′(s) = T (·, s), and its
(strong) derivatives (t′)(j) of all orders are in C

(
R, L2

)
;

cf. [17], [21]. A K∞ kernel T is called of Mercer type if it induces an integral operator T ∈ R(L2),
with the property that any operator belonging to M+(T ) is also an integral operator induced
by a K∞ kernel; cf. [21].

Any K∞ kernel T of Mercer type, along with all its partial and strong derivatives, is entirely
recoverable from the knowledge of at least oneM factorization for its associated integral operator
T , by means of bilinear series formulae universally applicable on arbitrary orthonormal bases of
L2:

Theorem 1. Let T ∈ R
(
L2
)
be an integral operator, with a kernel T that is a K∞ kernel

of Mercer type. Then, for any M factorization T = WV ∗ for T and for any orthonormal basis

{un} for L2, the following formulae hold

∂i+jT

∂si∂tj
(s, t) =

∑
n

[Wun]
(i) (s)[V un]

(j) (t), (2)

t(i)(s) =
∑
n

[Wun]
(i) (s)V un,

(
t′
)(j)

(t) =
∑
n

[V un]
(j) (t)Wun (3)

for all non-negative integers i, j and all s, t ∈ R, where the series of (2) converges C-absolutely
in C

(
R2,C

)
, and the series of (3) converge in C

(
R, L2

)
.

The theorem is proven in [21]. It can also be seen as a generalization of both Mercer's [13]
theorem (about absoluteness and uniformity of convergence of bilinear eigenfunction expansions
for continuous compactly supported kernels of positive, integral operators) and Kadota's [8]
theorem (about term-by-term di�erentiability of those expansions while retaining the absolute
and the uniform convergence) to various other settings; for details see [14], [21].

The main device for the proof of our reduction theorems in the next section is provided by
the following result, which characterizes families incorporating those operators in R(H) that can
be simultaneously transformed by the same unitary equivalence transformation into bi-integral
operators having as kernels K∞ kernels of Mercer type:

Theorem 2. Suppose that for an operator family {Sγ}γ∈G⊂ R(H) with an index set of

arbitrary cardinality there exists an orthonormal sequence {en} in H such that

lim
n→∞

sup
γ∈G

∥Sγen∥H = 0, lim
n→∞

sup
γ∈G

∥∥S∗
γen
∥∥
H = 0. (4)

Then there exists a unitary operator U : H → L2 such that all the operators Tγ = USγU
−1

(γ ∈ G) and their linear combinations are bi-integral operators on L2, whose kernels are K∞

kernels of Mercer type.

The proof is given in [21]. It provides an explicit procedure to �nd that unitary operator U :
H → L2 whose existence the Theorem 2 asserts. The procedure uses no spectral properties of
the operators Sγ , other than their joint property imposed in (4), to determine the action of U
by specifying two orthonormal bases, of H and of L2, one of which is meant to be the image by
U of the other; the basis for L2 may be chosen to be the Lemari�e-Meyer wavelet basis [3], [7,
Example D, p. 62].
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2. Reduction Theorems

Theorem 3. Suppose that the essential range of the coe�cient H in (1) contains the point

α ∈ C, that is,
µ{y ∈ Y : |H(y)− α| < ε} > 0 for all ε > 0. (5)

Then equation (1) is equivalent (via a unitary operator U from L2(Y, µ) onto L2) to an integral

equation in L2, of the form

αf(s) +

∫
R
(T 0(s, t)− λT (s, t)) f(t) dt = g(s) almost everywhere on R, (6)

where the function f(= Uϕ) of L2 is to be determined, the function g(= Uψ) of L2 is given, both

the functions T 0 and T are K∞ kernels of Mercer type, not depending on λ, and the function

T 0 − λT is also a K∞ kernel of Mercer type.

Proof. The proof relies primarily on the following observation by Korotkov [11, Corollary 1]:
If H is the multiplication operator induced on L2(Y, µ) by the coe�cient H , and I is the identity
operator on L2(Y, µ), then the two-element family {S1 = H−αI, S2 = K} of bounded operators
onH = L2(Y, µ) satis�es the assumptions of Theorem 2. The construction of Korotkov's sequence
{en} ful�lling (4) for this family is likely to be of practical use and deserves to be expounded in
some detail.

If E ⊂ Y is a µ-measurable set of positive �nite measure, the orthonormal sequence of
generalized Rademacher functions with supports in E will be denoted by {Rn,E}∞n=1 and is
constructed iteratively through successive bisections of E as follows:

R1,E =
1√
µE

(χE1 − χE2)

provided E1 ⊔ E2 = E with µE1 = µE2 =
1
2µE;

R2,E =
1√
µE

(
χE1,1 − χE1,2 + χE2,1 − χE2,2

)
provided Ei,1 ⊔Ei,2 = Ei with µEi,k = 1

4µE for i, k = 1, 2;

R3,E =
1√
µE

(χE1,1,1 − χE1,1,2 + χE1,2,1 − χE1,2,2 + χE2,1,1 − χE2,1,2 + χE2,2,1 − χE2,2,2)

provided Ei,k,1 ⊔ Ei,k,2 = Ei,k with µEi,k,j = 1
8µE for i, k, j = 1, 2; and so on inde�nitely (here

χZ denotes the characteristic function of a set Z and the unions are disjoint). A relevant result
due to Korotkov states that

lim
n→∞

∥K∗Rn,E∥L2(Y,µ) = 0 (7)

for any integral operator K ∈ R
(
L2(Y, µ)

)
and any µ-measurable E ⊂ Y with 0 < µE < ∞;

see, e.g., the proof of Theorem 3 in [10], or in [12, pp. 108�111].
Let {Yn}∞n=1 be an ascending sequence of sets of positive �nite measure, such that Yn ↑ Y ,

let {εn}∞n=1 be a sequence of positive reals strictly decreasing to zero, and de�ne En = Yn ∩
{y ∈ Y : εn+1 < |H(y)− α| ≤ εn} whenever n ∈ N. Due to the assumption (5), one can always
make the sets En to have �nite nonzero measures by an appropriate choice of Yn and εn (n ∈ N).
Supposing this has been done, let en = Rkn,En , where, for each n ∈ N, kn is an index satisfying

∥S2en∥L2(Y,µ) + ∥S∗
2en∥L2(Y,µ) = ∥KRkn,En∥L2(Y,µ) + ∥K∗Rkn,En∥L2(Y,µ) ≤ 1/n (8)
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(cf. (7)). Since the En's are pairwise disjoint, the en's form an orthonormal sequence in L2(Y, µ).
Moreover, by construction of sets En,

∥S1en∥2L2(Y,µ) = ∥S∗
1en∥2L2(Y,µ) = (1/µEn)

∫
En

|H(y)− α|2 dµ(y) ≤ ε2n. (9)

One can now assert from (8), (9) that ∥Sren∥L2(Y,µ) → 0, ∥S∗
r en∥L2(Y,µ) → 0 as n → ∞,

for r = 1, 2. By Theorem 2, there is then a unitary operator U : L2(Y, µ) → L2 such that the
operators T0 = US1U

−1, T = US2U
−1 and their linear combinations are bi-integral operators

on L2, whose kernels are K∞ kernels of Mercer type. This unitary operator can also be used to
transform the integral equation (1) into an equivalent integral equation of the form (6) in such
a way that T 0, T , and T 0 − λT , are just those K∞ kernels of Mercer type that induce T0, T ,
and T0 − λT , respectively. In operator notation, such a passage from (1) to (6) looks as follows:
Uψ = U(H − λK)U−1Uϕ = U(αI + S1 − λS2)U

−1Uϕ = αf + (T0 − λT )f = g where f = Uϕ,
g = Uψ. The theorem is proved.

Theorem 4. If, with the notation and hypotheses of Theorem 3, α = 0, then equation (1) is
equivalent to a �rst-kind integral equation in L2, of the form∫

R
(Γ 0(s, t)− λΓ (s, t)) f(t) dt = w(s) almost everywhere on R, (10)

where the function f of L2 is to be determined, both the functions Γ 0 and Γ are Hilbert-Schmidt

K∞ kernels of Mercer type, not depending on λ, and the function Γ 0 − λΓ is also a Hilbert-

Schmidt K∞ kernel of Mercer type.

Proof. In this case the equation (6), equivalent to (1), becomes∫
R
(T 0(s, t)− λT (s, t)) f(t) dt = g(s) for almost every s in R. (11)

Let m ∈ L2 be such that [m] is an in�nitely di�erentiable, positive function all whose derivatives
[m](i) belong to C(R,R), and letM be the multiplication operator induced on L2 by m. Multiply
both sides of equation (11) by m, to recast it into an equivalent equation of the form (10), with
the same sought-for function f ∈ L2, the new right side w = Mg ∈ L2, and the new kernel
Γ 0 − λΓ , where Γ 0(s, t) = [m](s)T 0(s, t), Γ (s, t) = [m](s)T (s, t). It is to be proved that Γ 0,
Γ are Hilbert-Schmidt K∞ kernels. The proof is further given only for Γ , as the proof for the
other kernel Γ 0 is entirely similar. If t is the associated Carleman function of the K∞ kernel T
(see (ii)), then∫

R

∫
R
|Γ (s, t)|2 dt ds =

∫
R
m2(s)∥t(s)∥2L2 ds ≤ ∥t∥2C(R,L2)∥m∥2L2 <∞,

implying that Γ is a Hilbert-Schmidt kernel and hence induces two Carleman functions γ,
γ′ : R → L2 by γ(s) = Γ (s, ·), γ′(t) = Γ (·, t). The series representation of T (see (2) for
i = j = 0) gives rise to a series representation of Γ , namely, with the notation of Theorem 1,

Γ (s, t) =
∑
n

[MWun] (s)[V un] (t) = [m](s)
∑
n

[Wun] (s)[V un] (t)

for all (s, t) ∈ R2. Moreover, for all non-negative integers i, j and all s, t ∈ R, the following
formulae hold

∂i+jΓ

∂si∂tj
(s, t) =

∑
n

[MWun]
(i) (s)[V un]

(j) (t)

=

i∑
r=0

(
i

r

)
[m](i−r)(s)

(∑
n

[Wun]
(r) (s)[V un]

(j) (t)

)
,
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γ(i)(s) =
∑
n

[MWun]
(i) (s)V un =

i∑
r=0

(
i

r

)
[m](i−r)(s)

(∑
n

[Wun]
(r) (s)V un

)
,

(
γ′)(j) (t) =∑

n

[V un]
(j) (t)MWun =M

(∑
n

[V un]
(j) (t)Wun

)
,

in as much as the bracketed series above converge C-absolutely in C
(
R2,C

)
, as regards the �rst

formula, and in C
(
R, L2

)
, as regards the last two formulae, by Theorem 1. Therefore

∂i+jΓ

∂si∂tj
∈ C

(
R2,C

)
, γ(i),

(
γ′)(j) ∈ C

(
R, L2

)
for all non-negative integers i, j, implying that Γ is a K∞ kernel.

If not all of the K∞ kernels Γ 0, Γ , Γ 0−λΓ are now of Mercer type, apply Theorem 2 to the
two-element family {S1 = MT0, S2 = MT} of compact operators on H = L2; the condition (4)
for this family is satisi�ed by any orthonormal sequence {en} in L2. The proof of the theorem is
now complete.

3. Remarks

In virtue of Theorems 3 and 4, one can con�ne one's attention (with no essential loss of
generality) to integral equations, whose kernels areK∞ kernels of Mercer type, depending linearly
on a parameter. One of the main technical advantages of dealing with such kernels is that their
restrictions to compact rectangles in R2 are fully amenable to the methods of the classical theory
of ordinary (nonsingular) integral equations, and can be applied to approximate the original
kernels with respect to C

(
R2,C

)
and C

(
R, L2

)
norms. This, for instance, can be used directly to

establish an explicit theory of spectral functions for any Hermitian K∞ kernel (T (s, t) = T (t, s))
by a development essentially the same as the one given by T. Carleman in [4, pp. 25�51]; see
also [24], [23], [1], [2, Appendix I], [5], [25], and [9], for further developments and applications
of Carleman's spectral theory. We believe that with regard to K∞ kernels of Mercer type this
Carleman's line of development can be extended far beyond the restrictive assumption of a
Hermitian (or normal) kernel; see, e.g., [14]. For the theory of Fredholm determinant and minors,
there are some applications in [15], [16], [19], and [20].

The present paper is a slightly edited version of [22].
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ÀÍÍÎÒÀÖÈß

Îáùåå ëèíåéíîå èíòåãðàëüíîå óðàâíåíèå 3-ãî ðîäà â L2(Y, µ) ñâîäèòñÿ óíè-
òàðíûì ïðåîáðàçîâàíèåì ê ýêâèâàëåíòíîìó èíòåãðàëüíîìó óðàâíåíèþ 1-ãî èëè
2-ãî ðîäà â L2(R) ñ ÿäðîì, ïðåäñòàâëÿþùèì ñîáîé ëèíåéíûé ïó÷îê îãðàíè÷åí-
íûõ, áåñêîíå÷íî äèôôåðåíöèðóåìûõ áèêàðëåìàíîâñêèõ ÿäåð ìåðñåðîâñêîãî
òèïà.
Êëþ÷åâûå ñëîâà: ëèíåéíûå èíòåãðàëüíûå óðàâíåíèÿ 1, 2 è 3-ãî ðîäà, óíèòàðíûé

îïåðàòîð, îïåðàòîð óìíîæåíèÿ, áèèíòåãðàëüíûé îïåðàòîð, áèêàðëåìàíîâñêîå

ÿäðî, ÿäðî Ãèëüáåðòà �Øìèäòà, áèëèíåéíûå ðàçëîæåíèÿ ÿäåð


