
Far Eastern Mathematical Journal. 2015. V. 15. № 1. P. 91–101

MSC2010 Primary 05C05, 60C05; secondary 60F05.

c⃝ Qunqiang Feng, Zhishui Hu1

Asymptotic normality of the Zagreb index of
random b-ary recursive trees

The b-ary recursive trees model is one of simple families of increasing trees.
In this work, the Zagreb index Zn of a random b-ary recursive tree of size n is
studied. As n → ∞, the asymptotic normality of Zn is established through
the martingale central limit theorem, as well as the asymptotic expressions
of the mean and variance of Zn are given.
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1. Introduction
For any fixed integer b ≥ 2, the b-ary recursive tree is a rooted, ordered, labeled tree

where the out-degree is bounded by b, and the labels along each path beginning at the
root increase. It was first obtained as an increasing tree by Bergeron et al. (1992), and
is a special case of the general model of random trees in Broutin et al. (2008). Formally,
a random b-ary recursive tree can be generated by the following recursive procedure.
Consider the infinite complete b-ary rooted, ordered tree, and start with the root as the
first internal node (labeled 1) and its b children as external nodes. Progressively, given
the random b-ary recursive tree with n − 1 (n ≥ 2) internal nodes, the internal node
labeled n is inserted as follows: An external node is chosen uniformly distributed on
the set of all current external nodes, change it to the nth internal node, and add the b
children of it to the set of external nodes. It is well-known that the binary search trees
can be regards as special members of the class of random b-ary recursive trees with b = 2
(see, for example, Knuth(1998)). For more backgrounds for the random b-ary recursive
trees, we refer the reader to Janson (2006), and Panholzer and Prodinger (2007).

As one of the well-known topological indices, the Zagreb index was introduced by the
chemists Gutman and Trinajstić (1972). This index is an important molecular descriptor
and has been closely correlated with many chemical properties. In chemistry, chemical
graphs are generated from molecules by replacing atoms with vertices and bonds with
edges, or represent only bare molecular skeletons, that is, molecular skeletons without
hydrogen atoms. The Zagreb index of a graph G is defined as the sum of the squares
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of the degrees of all vertices in G. For a survey of the application of the Zagreb index
in computational chemistry, we refer to Nikolić et al. (2003) and the references therein.
Besides, the Zagreb index also attracts attention in the graph theory (see, for example,
Andova et al. (2011)). Employing a similar method in Feng and Hu (2011), we shall
study the the limit behavior of the Zagreb index of a random b-ary recursive tree of
size n in this work.

The size of a b-ary recursive tree counts the number of internal nodes in it. In a
random b-ary recursive tree of size n, let Dk,n and D̄k,n be respectively the degree and
out-degree of the internal node labeled k, where the set of external nodes contributes
nothing to the (out-)degree of any internal node. Note that

D1,n = D̄1,n, Dk,n = D̄k,n + 1, 2 ≤ k ≤ n. (1)

Let Fn be the σ-field generated by the procedure of the first n internal nodes in random
b-ary recursive trees. The Zagreb index of a b-ary recursive tree is defined as the sum of
the squares of the degrees of all internal nodes in it. It is easier to work with a modified
Zagreb index which is defined in exactly the same way as the standard index, except
that the out-degrees of all internal nodes are instead of their degrees. Mathematically,
for any integer m ≥ 2, we can define the general Zagreb and modified Zagreb indices of
a random b-ary recursive tree of size n as

Z(m)
n =

n∑
k=1

Dm
k,n and Z̄(m)

n =
n∑

k=1

D̄m
k,n.

For the standard case m = 2, we will suppress the superscripts.
Throughout this work, all unspecified limits are taken to be n → ∞. We will also use

the following notation. For probabilistic convergence we use P−→ to denote convergence
in probability, and D−→ to denote convergence in distribution. We denote the integer
part of a real number x by ⌊x⌋, and, for positive integers n and j,

sn := n(b− 1) + 1, c[n, j] :=
Γ
(
n+ 1

b−1

)
Γ
(
n+ 1−j

b−1

) .
For any fixed j ≥ 1, it is easy to see that c[n, j] is strictly increasing, and

c[n, j] = n
j

b−1 (1 +O(n−1)). (2)

The rest of this work is organized as follows. In Section 2, we give the first two
moments of Zn. In Section 3, we state and prove our main result that under suitable
normalized, Zn has the asymptotic normality property.

2. The mean and variance
Let the random variables Zn and Z̄n be respectively the standard and modified

Zagreb index of a random b-ary recursive tree of size n. By (1), it is obvious that
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Z1 = Z̄1 = 0, and for n ≥ 2,

Zn =
n∑

k=1

D2
k,n =

n∑
k=1

D̄2
k,n + 2

n∑
k=1

D̄k,n + (n− 1) = Z̄n − 2D̄1,n + 3(n− 1), (3)

where we use the fact that the sum of the out-degrees of all nodes in a rooted tree of
size n is n− 1.

The right-hand side of (3) involves the out-degree of the root D̄1,n. It has been
known that

P(D̄1,n = b) = 1 +O

(
log n

n
1

b−1

)
, (4)

and this probability is strictly increasing in n, and converges to 1 as n → ∞ (see Kuba
and Panholzer (2007), where the terminology “d-ary increasing tree"is used instead of
“b-ary recursive tree"here). This, together with (3), shows that the standard Zagreb
index Zn is very close to a linear function of the modified one Z̄n. So we shall usually
consider Z̄n instead of Zn itself, and then give the corresponding results of Zn through
(3) and (4).

Considering the insertion of the internal node labeled n to a random b-ary recursive
tree of size n− 1, we have

Z̄n = Z̄n−1 + (D̄Vn,n−1 + 1)2 − D̄2
Vn,n−1 = Z̄n−1 + 2D̄Vn,n−1 + 1, (5)

where Vn denotes the parent of the internal node labeled n. Note that there are sn
external nodes in any random b-ary recursive tree of size n. It is easy to see that Vn has
the following conditional distribution law

P(Vn = k|Fn−1) =
b− D̄k,n−1

sn−1

, 1 ≤ k ≤ n− 1. (6)

The relations (5) and (6) are useful for the computation of the moments of Z̄n. We
will illustrate the procedure of the mean and variance. For the mean E[Z̄n], we proceed
with

E[Z̄n|Fn−1] = E[Z̄n|D̄k,n−1, 1 ≤ k ≤ n− 1] =

= Z̄n−1+ 2
n−1∑
k=1

D̄k,n−1P(Vn = k|Fn−1)+ 1 = Z̄n−1+
2

sn−1

(
b
n−1∑
k=1

D̄k,n−1 −
n−1∑
k=1

D̄2
k,n−1

)
+ 1 =

=
(
1− 2

sn−1

)
Z̄n−1 +

2(n− 2)b

sn−1

+ 1 =
c[n− 1, 2]

c[n, 2]
Z̄n−1 + αn−1, n ≥ 2, (7)

where
αn :=

2b(n− 1)

sn
+ 1.

Taking the expectation of both sides of (7), we have

E[Z̄n] =
c[n− 1, 2]

c[n, 2]
E[Z̄n−1] + αn−1, (8)
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which, with the initial value E[Z̄1] = 0, implies that

E[Z̄n] =
1

c[n, 2]

n−1∑
k=1

c[k + 1, 2]αk, n ≥ 2.

Noting the fact that

αn =
3b− 1

b− 1
(1 +O(n−1)),

we thus have

E[Z̄n] =
3b− 1

b+ 1
n+O(1). (9)

We now compute the variance of Z̄n in the following. By (5), one can get

E(Z̄n − Z̄n−1 − 1)2 = 4E
[
D̄2

Vn,n−1

]
=

4

sn−1

n−1∑
k=1

E
[
D̄2

k,n−1(b− D̄k,n−1)
]
=

=
4

sn−1

(
bE[Z̄n−1]− E[Z̄(3)

n−1]
)
. (10)

It follows from (7) that the sequence {c[n, 2](Z̄n − E[Z̄n]),Fn, n ≥ 1} is a martingale.
Then

E(Z̄n − Z̄n−1 − 1)2 = E(Z̄n − E[Z̄n]− Z̄n−1 + E[Z̄n−1])
2 + (E[Z̄n]− E[Z̄n−1]− 1)2 =

= Var[Z̄n] +
(
1− 2c[n− 1, 2]

c[n, 2]

)
Var[Z̄n−1] +

4

s2n−1

(
(n− 2)b− E[Z̄n−1]

)2
, (11)

which, together with (10), implies that

Var[Z̄n] =
(2c[n− 1, 2]

c[n, 2]
− 1
)
Var[Z̄n−1] + βn−1 =

c[n− 1, 4]

c[n, 4]
Var[Z̄n−1] + βn−1, (12)

where
βn :=

4

sn

(
bE[Z̄n]− E[Z̄(3)

n ]
)
− 4

s2n

(
(n− 1)b− E[Z̄n]

)2
. (13)

With the initial value Var[Z̄1] = 0, recurrence (12) gives that

Var[Z̄n] =
1

c[n, 4]

n−1∑
k=1

c[k + 1, 4]βk, n ≥ 2. (14)

To obtain the order of the variance of Z̄n, we should estimate βn which involves the
term E[Z̄(3)

n ]. For random variable Z̄
(3)
n , an analogous technique to (5) yields

Z̄(3)
n = Z̄

(3)
n−1 + (D̄Vn,n−1 + 1)3 − D̄3

Vn,n−1 = Z̄
(3)
n−1 + 3D̄2

Vn,n−1 + 3D̄Vn,n−1 + 1.
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Thus,

E[Z̄(3)
n ] = E[Z̄(3)

n−1] +
3

sn−1

n−1∑
k=1

E[(D̄2
k,n−1 + D̄k,n−1)(b− D̄k,n−1)] + 1 =

=
(
1− 3

sn−1

)
E[Z̄(3)

n−1] +
3

sn−1

(
(b− 1)E[Z̄n−1] + (n− 2)b

)
+ 1 =

=
c[n− 1, 3]

c[n, 3]
E[Z̄(3)

n−1] + γn−1, (15)

where
γn :=

3

sn
((b− 1)E[Z̄n] + (n− 1)b) + 1.

Similarly, with the initial value E[Z̄(3)
1 ] = 0, the solution of (15) is

E[Z̄(3)
n ] =

1

c[n, 3]

n−1∑
k=1

c[k + 1, 3]γk, n ≥ 2. (16)

By (9), it is straightforward to get

γn =
13b2 − 9b+ 2

(b− 1)(b+ 1)
+O(n−1),

which implies that, by (16),

E[Z̄(3)
n ] =

13b2 − 9b+ 2

(b+ 1)(b+ 2)
n+O(1).

Also in a similar way, by the definition of βn in (13) we have

βn =
4b(3b2 − 2b− 4)

(b+ 1)2(b+ 2)
+O(n−1). (17)

From the explicit expression of the variance of Z̄n given in (14), we can now proceed
with the computation

Var[Z̄n] =
4b(b− 1)(3b2 − 2b− 4)

(b+ 1)2(b+ 2)(b+ 3)
n+O(1). (18)

Since D̄1,n is bounded by b for each n ≥ 1, it follows from (4) that

E[D̄1,n] → b, Var[D̄1,n] → 0,

which, by (3), implies that E[Zn] = E[Z̄n] + 3n + O(1), and the variance of Zn is
asymptotically equivalent to Var[Z̄n]. Collecting the above conclusions in this section,
we have thus proved the following result.
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Proposition 1. Let Zn be the Zagreb index of a random b-ary recursive tree of size n.
Then

E[Zn] =
6b+ 2

b+ 1
n+O(1), Var[Zn] = σ2

bn+O(1),

where the constant

σ2
b =

4b(b− 1)(3b2 − 2b− 4)

(b+ 1)2(b+ 2)(b+ 3)
.

An immediate consequence of Proposition 1 is as follows.

Proposition 2. Let Zn be the Zagreb index of a random b-ary recursive tree of size n.
Then

Zn

n

P−→ 6b+ 2

b+ 1
.

Proof . It follows directly by Chebyshev’s inequality and the fact Var[Zn] = o(E2[Zn]).

3. Asymptotic normality

For the asymptotic behavior of the Zagreb index of random b-ary recursive trees,
we shall state our main result in Theorem 1, and then prove it based on the fact that
the sequence {c[n, 2](Z̄n − E[Z̄n]),Fn, n ≥ 1)} is a martingale.

Theorem 1. Let Zn be the Zagreb index of a random b-ary recursive tree of size n.
Then we have

Zn − 6b+2
b+1

n
√
n

D−→ N(0, σ2
b ),

where the constant σ2
b is given in Proposition 1.

In particular, for the binary search tree of size n as a special case b = 2, we have

Zn − 14
3
n

√
n

D−→ N
(
0,

8

45

)
.

In order to prove the above theorem, we need an auxiliary lemma as follows.

Lemma 1. For the general modified Zagreb index with m = 3 of a random b-ary
recursive tree of size n, we have

n− b+3
b−1

n∑
k=2

c[k, 2]2

sk−1

(Z̄k−1 − E[Z̄k−1])
P−→ 0, (19)

and

n− b+3
b−1

n∑
k=2

c[k, 2]2

sk−1

(
Z̄

(3)
k−1 − E[Z̄(3)

k−1]
)

P−→ 0. (20)
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Proof . We prove the latter convergence (20) first. Analogously to (15), one can get

E[Z̄(3)
n |Fn−1] =

(
1− 3

sn−1

)
Z̄

(3)
n−1 +

3

sn−1

((b− 1)Z̄n−1 + (n− 2)b) + 1,

which, together with (7), implies that

E[Z̄(3)
n −3(b−1)Z̄n|Fn−1] =

c[n− 1, 3]

c[n, 3]
(Z̄

(3)
n−1−3(b−1)Z̄n−1)−

3(n− 2)b(2b− 3)

sn−1

−3b+4.

Then it follows that the process {c[n, 3]Z̄∗
n,Fn, n ≥ 1} is also a martingale, where

Z̄∗
n := Z̄(3)

n − 3(b− 1)Z̄n − E[Z̄(3)
n − 3(b− 1)Z̄n].

Similarly to the computation of the variance of Z̄n in Section 2, one can obtain that the
variance of Z̄∗

n is also in the form of c∗bn+ O(1), where c∗b is a constant independent of
n. It follows from (2) that there exists an absolute constant c0, independent of n, such
that c[n, 3] < c0c[n, 2]

3/2. By Doob’s inequality, we thus have

E
[
max
2≤k≤n

{
c[k − 1, 3]

(
Z̄

(3)
k−1 − E[Z̄(3)

k−1]
)}2]

≤ 2E
[
max
2≤k≤n

{c[k − 1, 3]Z̄∗
k−1}2

]
+

+18(b− 1)2c20c[n, 2]E
[
max
2≤k≤n

{c[k − 1, 2](Z̄k−1 − E[Z̄k−1])}2
]
≤

≤ 8c[n, 3]2Var[Z̄∗
n] + 72(b− 1)2c20c[n, 2]

3Var[Z̄n] = O(1)n
b+5
b−1 . (21)

Note that

limn− 1
b−1

n∑
k=2

c[k, 2]2

c[k − 1, 3]sk−1

< ∞.

Therefore, by Chebyshev’s inequality and (21), for any ε > 0,

P

(∣∣∣∣∣
n∑

k=2

c[k, 2]2

sk−1

(
Z̄

(3)
k−1 − E[Z̄(3)

k−1]
)∣∣∣∣∣ > εn

b+3
b−1

)
≤

≤ 1

ε2n
2(b+3)
b−1

E

(
n∑

k=2

c[k, 2]2

sk−1

(
Z̄

(3)
k−1 − E

[
Z̄

(3)
k−1

] ))2

≤

≤ 1

ε2n
2(b+3)
b−1

(
n∑

k=2

c[k, 2]2

c[k − 1, 3]sk−1

)2
E
[
max
2≤k≤n

{
c[k−1, 3]

(
Z̄

(3)
k−1− E

[
Z̄

(3)
k−1

])}2]
= O

(
n−1
)
,

which implies (20).
The proof procedure for (19) is similar and simpler. Note that

n∑
k=2

c[k, 2]2

c[k − 1, 2]sk−1

= O(n
2

b−1 ),

and that in (21) we have used the following inequality

E
[
max
2≤k≤n

{
c[k − 1, 2](Z̄k−1 − E[Z̄k−1])

}2 ] ≤ 4c[n, 2]2Var[Z̄n] = O
(
n

b+3
b−1

)
.
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Also by Chebyshev’s inequality, we have

P

(∣∣∣∣∣
n∑

k=2

c[k, 2]2

sk−1

(Z̄k−1 − E[Z̄k−1)

∣∣∣∣∣ ≥ εn
b+3
b−1

)
≤

≤ 1

ε2n
2(b+3)
b−1

E

(
n∑

k=2

c[k, 2]2

sk−1

(
Z̄k−1 − E[Z̄k−1]

))2

≤

≤ 1

ε2n
2(b+3)
b−1

(
n∑

k=2

c[k, 2]2

c[k−1, 2]sk−1

)2
E
[
max
2≤k≤n

{
c[k−1, 2]

(
Z̄k−1−E[Z̄k−1]

)}2]
= O

(
n−1
)
.

The proof of Lemma 1 is complete.

We now give the proof of our main theorem in the following.
Proof of Theorem 1. By (3), (4) and Proposition 1, we only need to prove that

Z̄n − E[Z̄n]√
Var[Z̄n]

D−→ N(0, 1).

Recall that the sequence {c[n, 2](Z̄n − E[Z̄n]),Fn, n ≥ 1)} is a martingale. Let

Mk := c[k, 2](Z̄k − E[Z̄k])− c[k − 1, 2](Z̄k−1 − E[Z̄k−1]), k = 2, 3, . . . ,

with M1 = 0. Then the process {Mk, k ≥ 1} is a martingale difference sequence. By
Corollary 3.1 of Hall and Heyde (1980) and the expression of the variance Var[Z̄n] given
in (18), it is sufficient to show that, for any ε > 0,

1

c[n, 2]2n

n∑
k=2

E
[
M2

k I
(∣∣∣ Mk

c[n, 2]
√
n

∣∣∣ > ε
)∣∣∣Fk−1

]
P−→ 0, (22)

and
1

c[n, 2]2σ2
bn

n∑
k=2

E
[
M2

k |Fk−1

] P−→ 1. (23)

We first prove (22). By (5) and (8), we can rewrite Mk as

Mk = c[k, 2]Z̄k − c[k − 1, 2]Z̄k−1 − c[k, 2]αk−1 =

= c[k, 2]
(
Z̄k−1 + 2D̄Vk,k−1 + 1

)
− c[k − 1, 2]Z̄k−1 − c[k, 2]αk−1 =

= c[k, 2]

(
2D̄Vk,k−1 + 1 +

2Z̄k−1

sk−1

− αk−1

)
.

Note that for any n ≥ 2,

αn ≤ 3b− 1

b− 1
, D̄Vn,n−1 ≤ b,

Z̄n

sn
≤ nb2

n(b− 1) + 1
≤ b2

b− 1
.

Then there exists a positive constant cb, which only depends on b, such that

max
2≤k≤n

|Mk| ≤ cbc[n, 2] = o
(
c[n, 2]

√
n
)
,
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which implies that (22) holds.
Next we will prove (23). With similar calculations as in (10) and (11), we have

E
[
(Z̄n − Z̄n−1 − 1)2|Fn−1

]
=

4

sn−1

(
bZ̄n−1 − Z̄

(3)
n−1

)
,

and

E
[
(Z̄n − Z̄n−1 − 1)2|Fn−1

]
= E

[
(Z̄n − E[Z̄n])

2|Fn−1

]
+

+

(
1− 2c[n− 1, 2]

c[n, 2]

)(
Z̄n−1 − E[Z̄n−1]

)2
+

+
4

s2n−1

(
(n− 2)b− E[Z̄n−1]

)2 − 8

s2n−1

(
(n− 2)b− E[Z̄n−1])(Z̄n−1 − E[Z̄n−1]

)
.

Then
n∑

k=2

E
[
M2

k |Fk−1

]
=

=
n∑

k=2

(
c[k, 2]2E

[(
Z̄k − E[Z̄k]

)2 |Fk−1

]
− c[k − 1, 2]2

(
Z̄k−1 − E[Z̄k−1]

)2)
=

=
n∑

k=2

4c[k, 2]2

sk−1

(
bZ̄k−1 − Z̄

(3)
k−1

)
−

n∑
k=2

4c[k, 2]2

s2k−1

(
Z̄k−1 − E[Z̄k−1]

)2−
−

n∑
k=2

4c[k, 2]2

s2k−1

(
(k − 2)b− E[Z̄k−1]

)2
+

+
n∑

k=2

8c[k, 2]2

s2k−1

(
(k − 2)b− E[Z̄k−1]

) (
Z̄k−1 − E[Z̄k−1]

)
=

=
n∑

k=2

c[k, 2]2βk−1 −
n∑

k=2

4c[k, 2]2

sk−1

(
Z̄

(3)
k−1 − E

[
Z̄

(3)
k−1

]
− b

(
Z̄k−1 − E[Z̄k−1]

))
−

−
n∑

k=2

4c[k, 2]2

s2k−1

(
Z̄k−1 − E[Z̄k−1]

)2
+

+
n∑

k=2

8c[k, 2]2

s2k−1

(
(k − 2)b− E[Z̄k−1]

) (
Z̄k−1 − E[Z̄k−1]

)
=: J1 − J2 − J3 + J4,

where βn is defined in (13). By (17), it is easy to see that

lim βn =
b+ 3

b− 1
σ2
b ,

from which one can directly get

lim
J1

c[n, 2]2σ2
bn

= lim σ−2
b n− b+3

b−1

n∑
k=2

c[k, 2]2βk−1 = 1.
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Hence, to prove (23), we only need to prove that, for i = 2, 3, 4,

Ji
c[n, 2]2n

P−→ 0. (24)

It follows by Lemma 1 that the convergence (24) is valid for i = 2. Applying Chebyshev’s
inequality, for any ε > 0, we have

P(J3 > εn
b+3
b−1 ) ≤ ε−1n− b+3

b−1E[J3] = ε−1n− b+3
b−1

n∑
k=2

4c[k, 2]2

s2k−1

Var[Z̄k−1] → 0,

which implies that (24) holds for i = 3. It is easy to check that

limn− b+3
b−1

n∑
k=2

8c[k, 2]2

s2k−1

((k − 2)b− E[Z̄k−1])
2 =

8(b− 1)3

(b+ 1)2(b+ 3)
=: lb > 0.

We thus have that, for any ε > 0,

J4 ≤
lb
ε
J3 +

ε

lb

n∑
k=2

4c[k, 2]2

s2k−1

(
(k − 2)b− E[Z̄k−1]

)2
,

which implies that if n is sufficiently large,

P
(
n− b+3

b−1J4 > ε
)
≤ P

(
lb
ε
n− b+3

b−1J3 +
ε

2
> ε

)
= P

(
J3 >

ε2

2lb
n

b+3
b−1

)
→ 0.

Then (24) also holds for i = 4. This completes the proof of the stated result.
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[5] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. Total φ-electron
energy of alternant hydrocarbons”, Chemical Physics Letters, 17 (1972), 535–538.

[6] P. Hall and C.C. Heyde, Martingale limit theory and its application, Academic Press,
New York, 1980.

[7] S. Janson, “Random cutting and records in deterministic and random trees”, Random
Structures and Algorithms, 29 (2006), 139–179.

[8] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searchingn, ed. 2nd,
Addison-Wesley, Reading, Massachusetts, 1998.



Asymptotic normality of the Zagreb index of random b-ary recursive trees 101

[9] M. Kuba and A. Panholzer, “On the degree distribution of the nodes in increasing trees”,
Journal of Combinatorial Theory, Series A, 114 (2007), 597–618.
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АННОТАЦИЯ

Модель b-арных рекурсивных деревьев является одним из простых
семейств растущих деревьев. В данной работе изучается загребский
индекс Zn случайного b-арного дерева размера n. При n → ∞
асимптотическая нормальность Zn устанавливается из центральной
предельной теоремы о мартингалах. Вместе с этим получаются
асимптотические выражения среднего значения и дисперсии Zn.
Ключевые слова: случайное дерево, загребский индекс, мартингал,
асимптотическая нормальность.


