УДК 512.76 + 514.563.52 MSC2010 14E07 + 58A20

© П.В. Бибиков¹

О подгруппах бирациональных контактных отображений и гипотезе Клейна-Келлера

В работе предлагается новый, основанный на понятии симплектизации, подход к доказательству гипотезы Клейна–Келлера о структуре группы бирациональных контактных отображений пространства 1-джетов.

Ключевые слова: контактные отображения, бирациональные отображения, группа Кремоны, пространство джетов, точечные преобразования.

1. Введение

Герман Вейль сказал: «За душу каждого математика борются ангел чистой геометрии и дьявол абстрактной алгебры». Однако существуют задачи, в которых они выступают сообща. Подобные задачи, соединяющие в себе такие, казалось бы, различные разделы математики, всегда представляют особый интерес, поскольку именно благодаря таким задачам удается находить новые методы и новые взаимосвязи между различными областями науки.

Первой работой, в которой были соединены методы алгебры и геометрической теории дифференциальных уравнений, можно считать работу В.В. Лычагина и Б.С. Кругликова [1], в которой доказана так называемая глобальная теорема Ли-Трессе о конечной порожденности поля дифференциальных инвариантов. Далее в работах [2–6] автор совместно с В.В. Лычагиным использовал методы дифференциальных инвариантов и методы геометрической теории дифференциальных уравнений для решения классической алгебраической задачи описания орбит действия полупростых групп в их рациональных представлениях. В работах [7–9] автором совместно с А.И. Малаховым были применены методы алгебраической геометрии для глобальной классификации дифференциальных уравнений. Пример использования алгебры для решения задачи из дифференциальной геометрии можно встретить в работе Е.В. Ферапонтовым, М.В. Павловым и Р.Ф. Витоло [10]); они свели классификацию гамильтоновых операторов третьего порядка дифференциальногеометрического типа к классификации орбит действия проективной группы на

¹ Институт проблем управления РАН, 117997, г. Москва, ул. Профсоюзная, д. 65. Электронная почта: tsdtp4u@proc.ru

грассманианах. Последняя недавно была получена Л.Ю. Галицким и Д.А. Тимашевым в контексте описания метаабелевых алгебр Ли (см. [11]).

Данная статья продолжает этот ряд работ, посвященных неожиданным связям между алгеброй и геометрией. В ней исследуются бирациональные контактные отображения пространства 1-джетов J^1 . Мы описываем две естественные подгруппы таких отображений и доказываем для одной из них гипотезу Картана—Келлера о структуре группы всех таких отображений.

2. Необходимые обозначения и определения

Перед тем как переходить к изучению бирациональных контактных отображений, мы рассмотрим один интересный пример задачи, в которой соединяются алгебра и геометрия. Также мы введем понятия, которые будут необходимы в дальнейшем.

Пусть y'=F(x,y) — обыкновенное дифференциальное уравнение на неизвестную функцию $y\colon \mathbb{R} \to \mathbb{R}$ с гладкой правой частью F. Еще Исаак Ньютон сказал: «Полезно решать дифференциальные уравнения». Однако выяснилось, что далеко не каждое дифференциальное уравнение (даже первого порядка) может быть «решено» (т.е. проинтегрировано в квадратурах). Например, Лиувилль доказал, что уравнение $y'=y^2-x$ не допускает решений в квадратурах. Поэтому нужно было найти какой-то иной способ изучать дифференциальные уравнения. Такой подход был предложен С. Ли, который сказал: «Полезно классифицировать дифференциальные уравнения».

Обычно классификация дифференциальных уравнений проводится относительно двух групп: точечной или контактной.

2.1. Пространство джетов

Напомним, что 1-джетом функции f в точке a называется класс эквивалентности функций $[f]_a^1$, графики которых касаются в точке a. Множество всех 1-джетов всевозможных функций называется пространством 1-джетов и обозначается через J^1 . На этом пространстве можно ввести координаты (x,y,p), где

$$x([f]_a^1) = a, \quad y([f]_a^1) = f(a), \quad p([f]_a^1) = f'(a).$$

Важным обстоятельством в геометрической теории дифференциальных уравнений является наличие контактной структуры в пространстве 1-джетов J^1 . Рассмотрим в трехмерном касательном пространстве $T_{\theta}J^1$ (где $\theta \in J^1$) двумерную плоскость \mathcal{C}_{θ} , аннулирующую 1-форму \varkappa_{θ} , где $\varkappa := dy - pdx$ — форма Картана. Тогда распределение $\mathcal{C} : \theta \mapsto \mathcal{C}_{\theta}$ называется распределением Картана. Его максимальными интегральными многообразиями являются 1-графики функций $L^1_f = \{(a, f(a), f'(a))\}$.

Это обстоятельство является ключевым при определении групп преобразований дифференциальных уравнений. А именно, естественно рассматривать только те преобразования, которые переводят решения дифференциальных уравнений в решения образов этих уравнений. Это условие эквивалентно сохранению распределения

Картана \mathcal{C} . Преобразования, сохраняющие распределение Картана, называются $\kappa on-$ maкmными. В следующих двух разделах мы опишем две наиболее часто встречающиеся группы таких преобразований.

2.2. Точечные преобразования

Рассмотрим гладкое преобразование плоскости (x,y): $x\mapsto X=X(x,y),\ y\mapsto Y=$ =Y(x,y). Каждое такое преобразование поднимается до контактного преобразования пространства 1-джетов с помощью следующего преобразования координаты p: $p\mapsto (Y_x+Y_yp)/(X_x+X_yp)$. Такие преобразования называются movevnumu.

2.3. Контактные преобразования

Существуют и неточечные контактные преобразования. Важным примером являются *преобразования* Лежандра, которые имеют следующий вид:

$$x \mapsto Ap$$
, $y \mapsto AB(px - y)$, $p \mapsto Bx$.

Замечание 1. Вообще говоря, можно описать все контактные преобразования. Удобно сделать это в инфинитезимальной форме, т.е. в терминах алгебры Ли векторных полей, однопараметрические группы сдвигов вдоль которых состоят из контактных преобразований. Тогда для каждой функции h на пространстве 1-джетов J^1 векторное поле

$$X_h = -h_p \frac{\partial}{\partial x} + (h - ph_p) \frac{\partial}{\partial y} + (h_x + ph_y) \frac{\partial}{\partial p}$$

является контактным, и любое контактное векторное поле имеет такой вид. Кроме того, $\varkappa(X_h)=h.$

Вернемся к дифференциальным уравнениям вида y' = F(x,y). С. Ли показал (см., например, [12]), что каждое дифференциальное уравнение первого порядка в окрестности неособого 1=джета точечно эквивалентно тривиальному уравнению y' = 0. Отметим, что классификация уравнений старших порядков устроена гораздо сложнее (см., например, [13]).

Теперь рассмотрим алгебраический аналог этой задачи. Перейдем в поле комплексных чисел \mathbb{C} , будем рассматривать уравнения вида y' = F(x,y) с рациональной правой частью, а вместо произвольных диффеоморфизмов плоскости (x,y) будем рассматривать только бирациональные. Группа всех бирациональных отображений плоскости \mathbb{C}^2 называется группой Кремоны и обозначается через $\mathrm{Cr}(2)$. Возникает следующая задача: классифицировать уравнения вида y' = F(x,y) с рациональными правыми частями относительно действия группы Кремоны $\mathrm{Cr}(2)$.

По всей видимости, эта задача является новой и раньше не рассматривалась. Интерес к этой задаче подогревает и то обстоятельство, что, в отличие от гладкого случая, здесь классификация nempusuanena. В частности, уравнения y'=x и y'=y неэквивалентны относительно действия группы Кремоны, поскольку решениями

первого уравнения являются алгебраические кривые, а решениями второго — трансцендентные. С другой стороны, уравнения y'=1/x и y'=y эквивалентны: достаточно применить преобразование $(x,y)\mapsto (y,x)$.

Задача классификации уравнений y'=F(x,y) относительно действия группы Кремоны ${\rm Cr}(2)$ представляет значительный интерес как для теории дифференциальных уравнений, так и для алгебраической геометрии. К сожалению, эта задача на данный момент еще очень далека от полного решения.

3. Бирациональные контактные отображения

Сформулируем задачу, изучению которой посвящена данная работа. В предыдущем разделе мы описали все контактные преобразования пространства 1-джетов. Теперь рассмотрим алгебраический вариант этой проблемы. А именно, выберем в качестве основного поля поле комплексных чисел $\mathbb C$ и будем рассматривать не произвольные контактные преобразования, а лишь бирациональные отображения, т.е. отображения, заданные рациональными функциями, обратные к которым (на своей области определения) также задаются рациональными функциями. Множество таких преобразований образует группу Кремоны $\mathrm{Cr}(3)$. Возникает естественный вопрос: $\kappa a \kappa$ устроена группа $\mathrm{Cr}_{\mathrm{cont}}(3)$ бирациональных контактных преобразований?

Ясно, что группа бирациональных точечных преобразований Cr(2) и преобразования Лежандра содержатся в $Cr_{cont}(3)$. Существует следующая гипотеза, принадлежащая по разным версиям Клейну или Келлеру (см. [14,15]).

Гипотеза. Группа $Cr_{cont}(3)$ бирациональных контактных преобразований пространства 1-джетов J^1 порождается Cr(2) и преобразованиями Лежандра.

В пользу справедливости этой гипотезы говорит теорема М. Гизатуллина (см. [16]), утверждающая, что полиномиальные контактные преобразования пространства 1-джетов действительно порождаются полиномиальными преобразованиями плоскости (x,y) и преобразованиями Лежандра.

Один из естественных путей к доказательству гипотезы Картана – Келлера заключается в следующем. Рассмотрим бирациональное контактное отображение координат x, y. С точностью до преобразования Лежандра оно является бирациональным отображением плоскости (x,y) над полем $\mathbb{C}(p)$ рациональных функций от переменной p. Образующие группы таких отображений известны (см., например, [17]). Поэтому если удастся доказать, что все эти образующие представимы в виде композиции точечных отображений и преобразований Лежандра, гипотеза Картана – Келлера будет доказана.

В данной работе мы делаем первой шаг на этом пути. А именно, мы описываем две группы контактных бирациональных отображений. Первая группа состоит из отображений, которые действуют на плоскости (x,y) как аффинная группа с коэффициентами из поля $\mathbb{C}(p)$ (такую группу мы будем называть $a\phi\phi$ инной p-группой, а ее элементы — аффинными p-отображениями), а вторая — из отображений, которые сохраняют переменную p (эту группу будем называть послойной p-группой).

3.1. Аффинная *p*-группа

В этом разделе мы опишем структуру аффинной p-группы и докажем для нее гипотезу Клейна – Келлера.

Теорема 1. 1. Каждое аффинное *p*-отображение имеет вид $L \circ \Phi \circ L$, где L — преобразование Лежандра $(x,y,p) \mapsto (p,px-y,x)$, а Φ — точечное отображение вида

 $x \mapsto \frac{ax+b}{cx+d}, \quad y \mapsto A(x)y + B(x).$

2. Аффинная р-группа состоит из отображений вида

$$x \mapsto (cp+d)^{2} [(A(p)+pA'(p))x - A'(p)y + B'(p)],$$

$$y \mapsto [(A(p)+pA'(p))(ap+b)(cp+d) - pA(p)]x + [A(p)-A'(p)(ap+b)(cp+d)]y +$$

$$+ [(ap+b)(cp+d)B'(p) - B(p)],$$

$$p \mapsto \frac{ap+b}{cp+d},$$

где $a,\,b,\,c,\,d\in\mathbb{C}$ — константы, такие, что ad-bc=1, и $A,\,B\in\mathbb{C}(p)$ — рациональные функции.

Доказательство. Рассмотрим произвольное аффинное p-отображение F, переводящее x в X=X(x,y,p), y в Y=Y(x,y,p) и p в P=P(x,y,p). Из контактности F следует, что $dY-PdX=h\cdot(dy-pdx)$, где h— ненулевая гладкая функция на J^1 . Из этого условия получаем, что

$$P = \frac{Y_x + Y_y p}{X_x + X_y p}.$$

Поскольку функции X и Y аффинны по переменным x и y, то функция P не зависит от x и y: $p\mapsto P(p)$. Т.к. преобразование $p\mapsto P(p)$ бирационально, то P(p)=(ap+b)/(cp+d) — дробно-линейное преобразование (см., например, [17]).

Далее, рассмотрим композицию $L\circ F$, где L — преобразование Лежандра. Применяя слева подходящее точечное отображение, можно получить отображение вида $x\mapsto p,\ y\mapsto \lambda(p)x-y,\ p\mapsto \widetilde{P}(x,y,p).$ Опять используя условие контактности, находим $\lambda(p)=p$ и $\widetilde{P}(x,y,p)=x.$ Повторно применяя преобразование Лежандра, получаем тождественное преобразование. Тем самым п.1 теоремы доказан.

$$\Pi.2$$
 сразу следует из п.1.

Отметим, что ключевым в приведенном доказательстве является соображение о сохранении слоя с координатой p. Оказывается, существуют бирациональные контактные отображения, не являющиеся аффинными p-отображениями и сохраняющие слой с координатой p. Примером такого отображения служит послойное p-отображение

$$x \mapsto -\frac{x}{(px-y)^2}, \quad y \mapsto \frac{y-2px}{(px-y)^2}, \quad p \mapsto p.$$
 (1)

С другой стороны, если рассмотреть бирациональное контактное отображение, которое на базе x, y действует проективно, то оно, вообще говоря, не сохраняет слой,

как показывает пример

$$x \mapsto \frac{1}{x+y}, \quad y \mapsto \frac{y}{x+y}, \quad p \mapsto \frac{y-px}{p+1}.$$

Таким образом, существенной проблемой в изучении бирациональных контактных отображений является «неинформативность» преобразования координаты слоя p: зная, как преобразуется слой, трудно что-либо сказать о преобразовании базы. Однако есть способ эту информацию получить. Для этого нам потребуется понятие так называемой симплектизации контактного пространства 1-джетов J^1 .

Напомним (см. [18]), что симплектизация $\operatorname{Symp}(J^1)$ — это симплектическое пространство, элементами которого являются 1-формы $\lambda \varkappa_{\theta}$. Существует естественная проекция $\pi\colon \operatorname{Symp}(J^1)\to J^1$, $\lambda \varkappa_{\theta}\mapsto \theta$. Координатами на $\operatorname{Symp}(J^1)$ являются функции (q_1,q_2,p_1,p_2) , где $q_1:=x,\ q_2:=y,\ p_1:=-\lambda p$ и $p_2:=\lambda$. В этих координатах симплектическая структура на пространстве $\operatorname{Symp}(J^1)$ задается канонической 1-формой Лиувилля $\omega:=p_1dq_1+p_2dq_2$ (точнее говоря, ее дифференциалом $d\omega$).

С помощью симплектизации $\operatorname{Symp}(J^1)$ можно дать другое описание аффинных p-отображений контактного пространства J^1 .

Теорема 2. Каждое бирациональное отображение координат p_1 , p_2 , однородное степени 1 и не зависящее от координат q_1 , q_2 , может быть продолжено до симплектического отображения пространства $\operatorname{Symp}(J^1)$, аффинного по координатам q_1 , q_2 . Это отображение пространства $\operatorname{Symp}(J^1)$ проектируется на аффинное p-отображение пространства 1-джетов J^1 , причем каждое аффинное p-отображение может быть получено таким образом.

Замечание 2. Несложно описать все бирациональные отображения координат (p_1, p_2) . Согласно условиям, налагаемым на эти отображения, а также теореме Нетера (см., например, [19]), такие отображения порождаются линейными преобразованиями и инволюцией $\tau: (p_1, p_2) \to (p_1^{-1}, p_2^{-1})$, примененной четное число раз.

Таким образом, можно установить взаимно-однозначное соответствие между аффинными p-отображениями и послойными бирациональными симплектоморфизмами пространства $\operatorname{Symp}(J^1)$, однородными степени 1 по слоям.

Доказательство. Для доказательства этой теоремы необходимо воспользоваться следующим известным фактом (см. [18,20]): симплектоморфизм пространства $\operatorname{Symp}(J^1)$, сохраняющий каноническую 1-форму ω и однородный степени 1 по координатам слоя, индуцирует единственное контактное отображение пространства 1-джетов J^1 . Поэтому достаточно показать, что бирациональное отображение координат (p_1, p_2) может быть продолжено до симплектоморфизма, аффинного на базе (q_1, q_2) . Это можно сделать прямым вычислением, воспользовавшись замечанием 2 и указав явно преобразования координат (p_1, p_2) . Например, для отображения

$$p_1 \mapsto -\frac{p_1^2 - p_2^2}{p_2}, \quad p_2 \mapsto \frac{p_1^2 - p_2^2}{p_1}$$

преобразования координат q_1, q_2 выглядят так:

$$q_1 \mapsto \frac{p_2^2}{(p_1^2 - p_2^2)^2} \cdot (2p_1p_2q_1 + (p_1^2 + p_2^2)q_2) + F(p_2/p_1),$$

$$q_2 \mapsto \frac{p_1^2}{(p_1^2 - p_2^2)^2} \cdot ((p_1^2 + p_2^2)q_1 + 2p_1p_2q_2) + \int \frac{F'(p_2/p_1)}{p_1} dp_1.$$

Разумеется, функция F является рациональной и такой, что интеграл также рационален. \Box

Замечание 3. Отметим, что понятие симплектизации позволяет дать гораздо более простое и ясное описание аффинных точечных преобразований, нежели громоздкие формулы из теоремы 1.

3.2. Послойная р-группа

В этом разделе мы приведем описание контактных рациональных отображений, сохраняющих координату p.

Теорема 3. Любое послойное р-отображение имеет вид

$$x \mapsto F_1 \cdot x - F_2, \quad y \mapsto F_1 \cdot px - F_2 \cdot p + F, \quad p \mapsto p,$$

где F = F(y - px, p) — некоторая (не произвольная) рациональная функция, такая, что $F_1 \not\equiv 0$, и F_1 , F_2 — частные производные функции F по первому и второму аргументу соответственно.

Доказательство. Как и в теореме 2, нам будет удобнее воспользоваться описанием указанных отображений в терминах симплектизации $\operatorname{Symp}(J^1)$. Рассмотрим симплектическое отображение $(q_1, q_2, p_1, p_2) \mapsto (Q_1, Q_2, P_1, P_2)$, являющееся симплектизацией послойного p-отображения. Поскольку $p = -p_1/p_2$, то

$$P_i = \mu(q_1, q_2, p_1, p_2)p_i,$$

где μ — рациональная функция, однородная степени 0 по переменным p_1, p_2 .

Замечание 4. Если функция μ не зависит от координат q_1, q_2 , то получаются в точности отображения из теоремы 2. Однако существуют такие функции μ , которые нетривиально зависят от всех координат и приводят к отображениям, отличным от аффинных p-отображений. Например, отображению (1) соответствует функция $\mu(q_1, q_2, p_1, p_2) = (q_1p_1 + q_2p_2)^2/p_2^2$.

Записывая условие сохранения канонической 1-формы ω , получаем следующие соотношения на функции Q_i :

$$\mu \cdot (p_1 Q_{1q_i} + p_2 Q_{2q_i}) = p_i.$$

Дифференцируя первое равенство по q_2 , а второе по q_1 и приравнивая смешанные производные $Q_{iq_1q_2}$, получаем следующее соотношение на функцию μ : $\left(p_1/\mu\right)_{q_1} = \left(p_2/\mu\right)_{q_2}$. Решая это уравнение, получаем $\mu = \mu((p_1q_1+p_2q_2)/p_2,p_1/p_2)$.

Интегрируя уравнения на Q_i , получаем

$$\frac{p_1Q_1}{p_2} + Q_2 = \int \frac{p_1}{p_2\mu} dq_1 = F\left(\frac{p_1q_1 + p_2q_2}{p_2}, \frac{p_1}{p_2}\right).$$

Теперь вернемся к переменным x, y, p. Последнее равенство можно переписать в виде

$$Y - pX = F(y - px, p).$$

Выражая из этого равенства функцию Y и записывая условие сохранения контактной 1-формы Картана \varkappa , окончательно находим

$$X = F_1 \cdot x - F_2, \quad Y \mapsto F_1 \cdot px - F_2 \cdot p + F,$$

П

что и требовалось доказать.

Автор выражает глубокую благодарность М. Гизатуллину, обратившему его внимание на гипотезу Клейна – Келлера и познакомившего его со статьей [16].

Список литературы

- [1] B. Kriglikov, V. Lychagin, "Global Lie-Tresse theorem", Selecta Mathematica, New Series, 22:3, (2016), 1357–1411.
- [2] P. Bibikov, V. Lychagin, "GL₂(C)-orbits of binary rational forms", Lobachevskii Journal of Mathematics, 32:1, (2011), 95–102.
- [3] П. В. Бибиков, В. В. Лычагин, " $GL_3(\mathbb{C})$ -орбиты рациональных тернарных форм", $\mathcal{A}AH$, **438**:4, (2011), 295–297.
- [4] П. Бибиков, В. Лычагин, "Классификация линейных действий алгебраических групп на пространствах однородных форм", $\mathcal{A}AH$, **442**:6, (2012), 732–735.
- P. Bibikov, V. Lychagin, "On differential invariants of actions of semisimple Lie groups",
 J. Geometry and Physics, 2014, No 85, 99–105.
- [6] P. Bibikov, V. Lychagin, "Differential Contra Algebraic Invariants: Applications to Classical Algebraic Problems", Lobachevskii Journal of Mathematics, 37:1, (2016), 36–49.
- [7] П. Бибиков, "Задача Ли и дифференциальные инварианты ОДУ вида y'' = F(x, y)", Φy нкциональный анализ и его приложения, **51**:4, (2017).
- [8] P. Bibikov, "Generalized Lie Problem and Differential Invariants for the Third Order ODEs", Lobachevskii Journal of Mathematics, 38:4, (2017), 622–629.
- [9] P. Bibikov, A. Malakhov, "On Lie problem and differential invariants for the subgroup of the plane Cremona group", Journal of Geometry and Physics, 2017, № 121, 72–82.
- [10] E. Ferapontov, M. Pavlov, R. Vitolo, "Towards the Classification of Homogeneous Third-Order Hamiltonian Operators", *International Mathematics Research Notices*, **2016**:22, (2016), 6829-6855.
- [11] Yu. Galitski, D. Timashev, "On classification of metabelian Lie algebras", Journal of Lie Theory, 9:1, (1999), 125–156.
- [12] Д. Алексеевский, А. Виноградов, В. Лычагин, "Основные идеи и понятия дифференциальной геометрии", *Геометрия* 1, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, **28**, ВИНИТИ, М., 1988, 5–289.
- [13] P. Bibikov, "Differential Invariants and Contact Classification of Ordinary Differential Equations", Lobachevskii Journal of Mathematics, 36:3, (2015), 245–249.

- [14] F. Klein, Vorlesungen über höhere Geometrie, Springer, Berlin, 1926.
- [15] O. Keller, "Zur Theorie der ebenen Berührungstransformationen I", Math. Ann., 120, (1947), 650–675.
- [16] M. Gizatullin, "Klein's conjecture for contact automorphisms of the three-dimensional affine space", Michigan Math. J., 2008, No 58, 89–98.
- [17] В. Исковских, "Образующие в двумерной группе Кремоны над незамкнутым полем", Теория чисел, алгебра, математический анализ и их приложения, Сб. ст. Посвящается 100-летию со дня рождения Ивана Матвеевича Виноградова, Тр. МИАН, 200, Наука, М., 1991, 157–170.
- [18] В. Арнольд, Математические методы в классической механике, Наука, М., 1989.
- [19] V. Popov, "Algebraic groups and the Cremona group", Oberwolfach Reports, 10:2, (2013), 1053–1055.
- [20] P. Bibikov, "On symplectization of 1-jet space and differential invariants of point pseudogroup", J. Geometry and Physics, 2014, No 85, 81–87.

Поступила в редакцию 16 октября 2017 г.

Исследование выполнено при финансовой поддержке РФФИ (проект № 16-31-60018 мол а дк).

Bibikov P. V. On the subgroups of birational contact maps and the Kartan–Keller's conjecture. Far Eastern Mathematical Journal. 2018. V. 18. No 1. P. 9–17.

ABSTRACT

In the present paper the new approach to description of contact birational maps of 1-jet space is suggested. This approach is based on the notion of symplectization of the 1-jet space.

Key words: contact maps, birational maps, Cremona group, jet space, point transformations.