УДК 517.958:[531–142.6+536] MSC2010 82B44

© К. С. Солдатов^{1,2}, М. А. Падалко^{1,2}, В. С. Стронгин^{1,2}, Д. Ю. Капитан^{1,2}, Е. В. Васильев^{1,2}, А. Е. Рыбин^{1,2}, В. Ю. Капитан^{1,2}, К. В. Нефедев^{1,2}

Конечно-размерный скейлинг в ферромагнитных спиновых системах на решетке пирохлора

В работе представлены результаты высокопроизводительных вычислений модели Изинга, ХҮ-модели и классической модели Гейзенберга для решетки пирохлора. Расчеты осуществлялись с помощью алгоритмов Вольффа и Свендсена – Ванга в GPU-реализации. С использование метода конечно-размерного скейлинга были вычислены критические индексы и критические температуры.

Ключевые слова: Монте-Карло моделирование, конечно-размерный скейлинг, модель Изинга, модель Гейзенберга, классическая ХҮ-модель, решетка пирохлора

DOI: https://doi.org/10.47910/FEMJ202026

1. Введение

Критическими явлениями называют процессы, происходящие с физическими системами при приближении их состояний к точкам фазовых переходов. Важными аспектами критических явлений являются универсальность и масштабируемость [1,2]. Критические явления, связанные с фазовыми переходами второго рода, подразделяются на ограниченное число классов, универсальность которых определяется, в частности, пространственной размерностью, геометрической структурой, параметром порядка.

Объектом моделирования была решетка пирохлора, в узлах которой располагались взаимодействующие спины. Решетка пирохлора представляет собой трехмерную структуру, состоящую из тетраэдров. При этом каждая вершина тетраэдра соединена с вершиной другого (см. рис. 1). Спины в узлах решетки выстраиваются таким образом, что два из них смотрят внутрь тетраэдра, а два других — наружу.

¹ Дальневосточный федеральный университет, Школа естественных наук, 690922, г. Владивосток о. Русский, п. поселок Аякс, 10.

² Институт прикладной математики ДВО РАН, 690041, г. Владивосток, ул. Радио, 7. Электронная почта: konstantin.soldatov@bk.ru (К.С. Солдатов), padalkoma1992ofacc@gmail.com (М.А. Падалко).

Рис. 1. Структура решетки пирохлора. Каждая вершина тетраэдра соединена с вершиной соседнего тетраэдра.

Стоит отметить, что в последнее время наблюдается повышенный интерес к материалам из пирохлора из-за того, что они проявляет свойства спинового льда [6,7].

Одним из эффективных подходов, часто используемым в расчете физических систем, состоящих из большого числа частиц, является Монте-Карло моделирование [8]. К классу Монте-Карло методов относится и алгоритм Метрополиса, применямый для определения различных физических параметров систем, находящихся в состоянии термодинамического равновесия [9]. Однако алгоритм Метрополиса имеет серьезный недостаток, связанный с проблемой критического замедления: для приведения системы в состояние термодинамического равновесия вблизи критической температуры требуется очень большое количество времени. Для преодоления данной проблемы были разработаны кластерные алгоритмы Монте-Карло, например, мультикластерный алгоритм Свендсена – Ванга [10] и однокластерный алгоритм Вольффа [11].

Высокопроизводительные вычисления осуществлялись с использованием графических процессоров (GPU). Параллелизация кластерных алгоритмов не является тривиальной задачей, так как часть алгоритма, в которой происходит определение кластера, требует последовательных операций. Комура и Окабе [12] предложили использовать GPU для мультикластерного алгоритма Свендсена – Ванга с применением идей Ховика [13] и Калантева [14]. Не так давно Комура [15] предложил эффективный подход к реализации мультикластерного алгоритма Свендсена – Ванга. Програмный код медотов [12] и [15] опубликован в [16,17]. Данные алгоритмы применялись при исследовании фазовых переходов в двумерной ХҮ модели [18] и модели Изинга на квазикристаллической решетке Пенроуза [19].

Оставшаяся часть материала организована следующим образом: модель и метод описаны в Разделе 2. Раздел 3 содержит представление и обсуждение результатов, в Разделе 4 подводятся итоги.

2. Модель и метод

В качестве основной сруктурной единицы рассматривалась 16-узловая единичная кубическая ячейка пирохлора [20]. Из множества таких ячеек строилась основная моделируемая конструкция. Расчет осуществлялся для систем из LxLxL таких ячеек. Число спинов в такой системе равно $16 \cdot L^3$. Рассматривались периодические граничные условия.

Гамильтониан для классических спиновых моделей имеет вид

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \boldsymbol{s}_i \cdot \boldsymbol{s}_j, \tag{1}$$

где J — константа обменного взаимодействия, s_i есть *n*-мерный единичный вектор в узле решетки i [21]. При этом n=1 для модели Изинга, n=2 классической ХҮ модели и n=3 классической модели Гейзенберга соответственно. Суммирование производится по всем парам ближайших соседей $\langle i,j \rangle$. Координационное число решетки пирохлора равно 6, как и у простой кубической решетки.

Расчеты были осуществлены для трех моделей: модели Изинга, ХҮ-модели и модели Гейзенберга. Для каждой из них осуществлялось по 4 расчета для решеток пирохлора с линейными размерами: L=32 (524288 спинов), L=48 (1769472 спинов), L=64 (4194304 спинов) и L=96 (14155776 спинов).

Расчет модели Изинга осуществлялся с использованием алгоритма Свендсена – Ванга [15]. Для моделирования систем с непрерывной симметрией (ХҮ модели и модели Гейзенберга) использовался подход с использованием алгоритма Вольффа [11]. Во всех трех моделях критическая температура была определена методом конечноразмерного скейлинга [22] кумулянтов Биндера [23]. Данные, получаемые с первых 10,000 Монте-Карло шагов отбрасывались, чтобы избежать влияния стартовой конфигурации. В расчете учитывались данные следующих 200,000 Монте-Карло шагов. Для системы каждого размера было проведено по 5 независимых численных экспериментов; рассчитывалось среднее по пяти результатам, производился расчет среднеквадратического отклонения. В расчетах использовалась ферромагнитная модель.

3. Результаты

3.1. Модель Изинга

Сперва рассмотрим модель Изинга. В ней наблюдается фазовый переход второго рода для систем с размерностью выше одного [24]. Эффективным способом оценки T_c является метод кумулянтов Биндера [23]. В данном подходе необходимо вычислить так называемый кумулянт Биндера по намагниченности, определяемый по формуле (с точностью до аддитивной постоянной и постоянного множителя)

$$U(T) = \frac{\langle M(T)^4 \rangle}{\langle M(T)^2 \rangle^2} = \frac{\langle m(T)^4 \rangle}{\langle m(T)^2 \rangle^2},\tag{2}$$

где m — намагниченность на один спин: m=M/N. На рис. 2 приводится зависимость кумулянта Биндера от температуры для систем с L=32 (N=524288), L=48 (N=1769472), L=64 (N=4194304) и L=96 (N=14155776). На рисунке можно увидеть, что $U(T) \rightarrow 1$ при $T \rightarrow 0$, в то время как $U(T) \rightarrow 3$ при $T \rightarrow \infty$. Размерность температуры представлена в единицах J; другими словами, мы принимаем J=1. Среднеквадратическое отклонение находится в пределах размеров знаков на рисунке. На рис. 2 мы видим, что данные для различных L пересекаются в точке T=4.214, что дает нам значение критической температуры T_c .

Рис. 2. Температурная зависимость кумулянта Биндера для намагниченности в модели Изинга на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L == 96 (N = 14155776). L = 64 (N = 4194304) и L = 96 (N = 14155776).

Чтобы получить более точную оценку T_c , рассмотрим скейлинговую функцию [22] для соотношения U(T).

$$U(t) = f_1 \left(t \, (N^{1/3})^{1/\nu} \right),\tag{3}$$

где $t = (T - T_c)/T_c$ и ν — критический индекс корреляционной длины. Зависимость $U(T) = \langle m^4 \rangle / \langle m^2 \rangle^2$ как функции от $t(N^{1/3})^{1/\nu}$ представлена на рис. 3; видно, что графики для систем различных размеров сходятся в одну кривую в рамках среднеквадратического отклонения при следующих значениях $T_c = 4.21394(2)$ и $\nu = 0.629(2)$. Полученное значение ν универсально для трехмерных систем в рамках модели Изинга [30]. Значение $T_c = 4.21394(2)$, составляет 93.4% от T_c для простой кубической решетки, 4.511524(20) [30], хотя координационное число обеих решеток совпадает и равно 6.

Рис. 3. График скейлинговой функции соотношения Биндера в модели Изинга на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L = 96 (N = 14155776). Значения T_c и ν представлены на изображении.

Далее рассмотрим скейлинговую функцию для среднеквадратичной намагниченности: $(-2) = (2\pi)^{1/3} - 2\beta/\mu c (1+(2\pi)^{1/3})/\mu$

$$\langle m^2 \rangle = (N^{1/3})^{-2\beta/\nu} f_2 \Big(t \, (N^{1/3})^{1/\nu} \Big),$$
(4)

где β — критический индекс намагниченности. Используя полученные ранее значения T_c и ν , построим график скейлинговой функции среднеквадратичной намагниченности (рис. 4). Графики для решеток разных размеров накладываются друг на

Рис. 4. График скейлинговой функции среднеквадратичной намагниченности в модели Изинга на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L == 96 (N = 14155776). Значения T_c , ν и β/ν представлены на изображении.

друга при β/ν равном 0.520(5), что подтверждает эффективность метода конечноразмерного скейлинга.

3.2. ХҮ модель

Найдем критическую температуру для ХҮ-модели. Вновь воспользуемся методом кумулянтов Биндера. Температурная зависимость кумулянтов Биндера для намагниченности M для классической ХҮ-модели на решетке пирохлора представлена на рис. 5. На рисунке показано, что для случая ХҮ-модели $(n=2), U(T) \rightarrow 2$ при $T \rightarrow \infty$. Размеры систем аналогичны ранее рассмотренным в модели Изинга, среднеквадратическое отклонение в пределах знаков на рисунке. На графике видим, что данные для различных L пересекаются в точке T=2.029.

На рис. 6 изображен график скейлинговой функции для соотношения Биндера в классической ХҮ-модели на решетке пирохлора. Данные для различных размеров с хорошей точностью накладываются друг на друга при значениях T_c и ν , равных 2.02850(2) и 0.672(2)соответственно. Полученное значение критического индекса ν универсально для 3D ХҮ-модели [31]. Величина $T_c = 2.02850(2)$, составляет 92.1% от $T_c = 2.20182(5)$ для простой кубической решетки [32]. График скейлинговой функции среднеквадратичной намагниченности в классической ХҮ-модели на ре-

Рис. 5. Температурная зависимость соотношения Биндера для намагниченности в XY модели на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L = 96 (N = 14155776).

Рис. 6. График скейлинговой функции соотношения Биндера в классической XY модели на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L = 96 (N = 14155776). Значения T_c и ν представлены на изображении.

Рис. 7. График скейлинговой функции среднеквадратичной намагниченности в классической XY модели на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L = 96 (N = 14155776). Значения T_c , ν и β/ν представлены на изображении.

шетке пирохлора изображен на рис. 7. Используя полученные ранее значения T_c и ν , находим $\beta/\nu = 0.515(5)$.

3.3. Модель Гейзенберга

Далее рассмотрим температурную зависимость соотношения Биндера в классической модели Гейзенберга на решетке пирохлора (рис. 8). В случае модели Гейзенберга (размерность равна трем), $U(T) U(T) \to 5/3$ при $T \to \infty$.

На рис. 9 изображен график скейлинговой функции соотношения Биндера для классической модели Гейзенберга на решетке пирохлора. Графики для решеток различных размеров накладываются друг на друга при значениях T_c и ν , равных 1.31695(2) и 0.711(2)соответственно. Полученное значение критического индекса ν универсально для 3D модели Гейзенберга [33]. Величина T_c , 1.31695(2)составляет 91.3% от T_c простой кубической решетки. 1.4430(2) [34].

График скейлинговой функции среднеквадратичной намагниченности классической модели Гейзенберга на решетке пирохлора изображен на рис 10. Используя полученные ранее значения T_c и ν , находим $\beta/\nu = 0.515(5)$.

Рис. 8. Температурная зависимость соотношения Биндера для намагниченности в модели Гейзенберга на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L = 96 (N = 14155776).

Рис. 9. График скейлинговой функции соотношения Биндера в классической модели Гейзенберга на решетке пирохлора для систем с линейными размерами (и числом спинов) L = 32 (N = 524288), L = 48 (N = 1769472), L = 64 (N = 4194304) и L = 96 (N = 14155776). Значения T_c и ν представлены на изображении.

Рис. 10. График скейлинговой функции средне-квадратичной намагниченности в классической модели Гейзенберга на решетке пирохлора. Размеры систем $N = 16L^3$. Значения T_c , ν и β/ν представлены на изображении.

4. Выводы

Были произведены высокопроизводительные вычисления для ферромагнитных классических спиновых моделей на решетке пирохлора. Для расчетов использовался мультикластерный алгоритм Вольффа, а также алгоритм Свендсена – Ванга в GPU реализации [15]. Методом конечно-размерного скейлинга были получены критические температуры 4.21394(2), 2.02850(2), и 1.31695(2) для модели Изинга (n = 1), XY модели (n = 2), и модели Гейзенберга (n = 3) соответственно, что составляет 93.4%, 92.1% и 91.3% от T_c для простой кубической решетки. В данной работе была рассмотрена идеальная решетка. В дальнейшем планируется исследовать применимость данного метода к случайным системам, например, на решетку пирохлора с разбавлениями.

Для выполнения расчетов были использованы вычислительные ресурсы ЦКП "Центр данных ДВО РАН". Исследование выполнено в рамках государственного задания миннауки РФ #075-00400-19-01.

Список литературы

 H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford Univ. Press, New York, 1971.

- [2] C.-K. Hu, "Historical Review on Analytic, Monte Carlo, and Renormalization Group Approaches to Critical Phenomena of Some Lattice Models", Chinese J. Phys., 52:1, (2014), 1–76.
- [3] M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, "Geometrical Frustration in the Ferromagnetic Pyrochlore Ho₂Ti₂O₇", Phys. Rev. Lett., **79**:13, (1997).
- [4] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, B. S. Shastry, "Zero-point entropy inspinice", *Nature (London)*, **399**, (1999), 333–335.
- [5] S. T. Bramwell, J. P. Gingras, "Spin Ice State in Frustrated Magnetic Pyrochlore Materials", Science, 294:5546, (2001), 1495–1501.
- [6] X. Ke, R. S. Freitas, B. G. Ueland, G. C. Lau, M. L. Dahlberg, R. J. Cava, R. Moessner, P. Schiffer, "Nonmonotonic Zero-Point Entropy in Diluted Spin Ice", *Phys. Rev. Lett.*, 99, (2007), 137203.
- [7] Y. Shevchenko, K. Nefedev, Y. Okabe, "Entropy of diluted antiferromagnetic Ising models on frustrated lattices using the Wang-Landau method", *Physical Review E*, 95:5, (2017), 052132.
- [8] D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edition, Cambridge University Press, Cambridge, 2009.
- [9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, "Equation of State Calculations by Fast Computing Machines", J. Chem. Phys., 21:6, (1953), 1087.
- [10] R. H. Swendsen, J. S. Wang, "Nonuniversal critical dynamics in Monte Carlo simulations", *Phys. Rev. Lett.*, 58, (1987), 86.
- [11] U. Wolff, "Collective Monte Carlo Updating for Spin Systems", Phys. Rev. Lett., 62, (1989), 361.
- [12] Y. Komura, Y. Okabe, "GPU-based Swendsen-Wang multi-cluster algorithm for the simulation of two-dimensional classical spin systems", Comput. Phys. Comm., 183, (2012), 1155.
- [13] K. A. Hawick, A. Leist, D. P. Playne, "Parallel Graph Component Labelling with GPUs and CUDA", *Parallel Computing*, 36, (2010), 655.
- [14] O. Kalentev, A. Rai, S. Kemnitzb, R. Schneider, "Connected component labeling on a 2D grid using CUDA", J. Parallel Distrib. Comput., 71, (2011), 615.
- [15] Y. Komura, "A generalized GPU-based connected component labeling algorithm", Comput. Phys. Comm., 194, (2015), 54, arXiv: 1603.08357.
- [16] Y. Komura, Y. Okabe, "CUDA programs for the GPU computing of the Swendsen–Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models", *Comput. Phys. Comm.*, 185, (2014), 1038–1043.
- [17] Y. Komura, Y. Okabe, "Improved CUDA programs for GPU computing of Swendsen–Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models", *Comput. Phys. Comm.*, 200, (2016), 400–401.
- [18] Y. Komura, Y. Okabe, "Large-Scale Monte Carlo Simulation of Two-Dimensional Classical XY Model Using Multiple GPUs", J. Phys. Soc. Jpn., 81, (2012), 113001.
- [19] Y. Komura, Y. Okabe, "High-Precision Monte Carlo Simulation of the Ising Models on the Penrose Lattice and the Dual Penrose Lattice", J. Phys. Soc. Jpn., 85, (2016), 044004.
- [20] H. Shinaoka, Y. Tomita, Y. Motome, "Effect of magnetoelastic coupling on spin-glass behavior in Heisenberg pyrochlore antiferromagnets with bond disorder", *Phys. Rev. B*, 90, (2014), 165119.
- [21] J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, Oxford University Press, O, 1932.
- [22] M.E. Fisher, "The Theory of critical point singularities", Proc. 1970 E. Fermi Int. School

of Physics, v. 51, ed. M.S. Green, Academic, New York, 1971, 1–99.

- [23] K. Binder, "Finite size scaling analysis of ising model block distribution functions", Z. Phys. B: Condens. Matter, 43, (1981), 119.
- [24] Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, В 10 т. Т. 5 (В 2 ч. Ч.1) Статистическая физика, Физматлит, М., 2013.
- [25] C.-K. Hu, C.-Y. Lin, J.-A. Chen, "Universal Scaling Functions in Critical Phenomena", Phys. Rev. Lett., 75, (1995), 193.
- [26] Y. Okabe, M. Kikuchi, "Universal finite-size-scaling functions", International Journal of Modern Physics C, 7, (1996), 287–294.
- [27] Y. Okabe, K. Kaneda, M. Kikuchi, C.-K. Hu, "Universal finite-size scaling functions for critical systems with tilted boundary conditions", *Phys. Rev. E*, 59, (1999), 1585.
- [28] Y. Tomita, Y. Okabe, C.-K. Hu, "Cluster analysis and finite-size scaling for Ising spin systems", Phys. Rev. E, 60, (1999), 2716.
- [29] M.-C. Wu, C.-K. Hu, N.Sh. Izmailian, "Universal finite-size scaling functions with exact nonuniversal metric factors", *Phys. Rev. E*, 67, (2003), 065103(R).
- [30] H. W. J. Blöte, E. Luijten, J. R. Heringa, "Ising universality in three dimensions: a Monte Carlo study", J. Phys. A: Math. Gen., 28, (1995), 6289.
- [31] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, "Critical behavior of the three-dimensional XY universality class", *Phys. Rev. B*, 63, (2001), 214503.
- [32] A. P. Gottlob, M. Hasenbusch, S. Meyer, "Critical behaviour of the 3D XY-model: A Monte Carlo study", Nucl. Phys. B (Proc. Suppl.), 30, (1993), 838.
- [33] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, "Critical exponents and equation of state of the three-dimensional Heisenberg universality class", *Phys. Rev. B*, 65, (2002), 144520.
- [34] C. Holm, W. Janke, "Critical exponents of the classical three-dimensional Heisenberg model: A single-cluster Monte Carlo study", *Phys. Rev. B*, 48, (1993), 936.

Поступила в редакцию

5 ноября 2019 г.

Soldatov K. S., Padalko M. A., Strongin V. S., Kapitan D. Yu., Vasiliev E. V., Rybin A. E., Kapitan V. Yu., Nefedev K. V. Finite-size scaling in ferromagnetic spin systems on the pyrochlore lattice. Far Eastern Mathematical Journal. 2020. V. 20. No 2. P. 255–266.

ABSTRACT

In this paper we present the results of the high-performance computations for the Ising model, the XY-model and the classical Heisenberg model for the pyrochlore lattice. We used Wolff and Swendsen-Wang cluster algorithms with GPU parallelization for the calculations. We obtained critical exponents and critical temperatures using finite-size scaling approach.

Key words: phase transitions, critical temperature, finite-size scaling, pyrochlore lattice, cluster algorithms.