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Numerical methods for systems of diffusion
and superdiffusion equations with Neumann
boundary conditions and with delay

A feature of many mathematical models is the presence of two equations of the
diffusion type with Neumann boundary conditions and the delay effect, for exam-
ple, in the model of interaction between a tumor and the immune system. In this
paper we construct and study the orders of convergence of analogues of the implicit
method and the Crank-Nicolson method. Also, for a system of space fractional
superdiffusion-type equations with delay and Neumann boundary conditions, an
analogue of the Crank-Nicolson method is constructed. To approximate the two-
sided fractional Riesz derivatives, the shifted Grunwald-Letnikov formulas are used;
to take into account the delay effect, interpolation and extrapolation of the discrete
history of the model are used.
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Introduction

Systems of partial differential equations, as well as systems of ordinary differential equa-
tions, are widely used in mathematical modeling. In many equations of the diffusion type,
boundary conditions of the second type (Neumann conditions) are considered, which cre-
ates difficulties in the construction and study of numerical algorithms. Models can also
contain the effect of time-delay. An example is the model of interaction between a tumor
and the immune system [1]. Besides, in recent years systems of fractional differential
equations [2] have become more and more popular.

In this work, numerical calculations are essentially used, but the justification of the
convergence of numerical methods for such problems has not been previously carried out.
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For boundary conditions of the first kind (Dirichlet conditions), numerical algorithms for
solving diffusion-type equations with functional delay were previously developed in [3].
Convergence was proved using the technique of embedding difference schemes with hered-
ity in the general scheme and determining stability using the general theory of difference
schemes. For the Neumann problems of equations of diffusion type, this technique turned
out to be inapplicable. However, the simplest difference schemes can be studied based on
the properties of the resulting system of linear algebraic equations.

But the Neumann problem for systems of equations of superdiffusion type, the tech-
nique of embedding in the general scheme is applicable in the same way as for the Dirichlet
problem [4].

1 Diffusion-type equations

1.1 Problem definition

Let us consider a system of equations of the diffusion type with a functional delay of the

form
{Bu(gat:,t) = al% + fl(x7tvu(xvt)aut(xa ')a v(x,t),vt(x, ))a

1)

2
w = GQ% + fg(x,t,u(x,t)7ut($, ')7U($7t)7vt(x7 ))7
where 0 < ¢t <7, 0 < z < X are independent variables, u(z,t), wv(x,t) are desired
functions, u¢(z, ) = {u(z,t +s),7 < s < 0} and v(z, ) = {v(zr,t +s),7 < s < 0} are
stories of desired functions by the time ¢, 7 > 0 is the value of delay, a; > 0, as > 0.
Initial conditions are given

Tt

N

) 0’ (2)

u(z,t) = @(x,t), 0<zx
v(x,t) =¢(x,t), 0<

<X, -
r< X, —7<t<0.

Homogeneous boundary conditions of the second type (Neumann conditions) are also set

du(x,t) ou(z,t)
D —, MBUN g g<t<T, 3
Oxr lz=0 ’ Oxr laz=x » U< (3)
ov(z,t) —0, ov(x,t) —0,0<t<T.
6.13 =0 833 =X

We introduce vector notation

o= () r= ()= (),

then the system (1) can be written as

oU (z,t) _4 02U

ot OW+F((E,t,U(.’E,t)7Ut(xa'))a

where A ¢ U denotes the vector with coordinates (ZIZ>, if A= (Zl)
2 2
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1.2 Implicit method

Introduce the time step A = 775;» Where Mo is a natural number and let M = [%]

Introduce points ¢t; = jA, j = =My, ..., M. Let us divide the segment [0, X] into parts
with a step h = X/N, N is an integer, N > 2, by introducing the points z; = ih,
i =0,...,N. The approximation of the vector function U(z;,t;) at the grid nodes will

be denoted by the vector Vij with coordinates u{ , v’ )

%

Using the fictitious knot method, we construct an implicit numerical method

A A
(1 + 2h2A<>> Vgt - QEA oVl =VI" 4 AF (a?o, tmt1, V™ (tm1)o, Vi (')o)7 (4)

A A A
m—+1 m+1 m—+1
——tho V. + <1+2h2A<>> V; — —hQAoV =

i+1
(5)
=V" 4+ AF (wi,tm-ﬂ, V™ (tm1)is ‘/1572+1(')i) ; i=1,...,N—1,
A A -
_ZEAO Vit + (1 + 2h2A<>> Vit = o
= Vi AF (2,1, V7 (s ) Vi, ()

where V[ZH()I is the result of piecewise constant interpolation with extrapolation by
continuation at the point ¢, + A [3].

The system (4)—(6) is two systems corresponding to the coordinates of the vector V,
each of which has a tridiagonal structure with diagonal dominance equal to one. This
implies the effective solvability of the system by the sweep method and the stability of
the algorithm.

Theorem 1. If the exact solution of the problem (1)—(3) u(x,t), v(x,t) is four times
continuously differentiable with respect to x and continuously differentiable with respect
to t, then the error of the method (4)—(6) has order h* + A.

The theorem is proved using the properties of a system with a tridiagonal matrix.

1.3 Crank-Nicholson method

We construct an analog of the Crank-Nicolson method
A A A m A m
<1+h2A<>)Vom+1h2A<>V1m+1_<1h2A0)VO +ﬁA<>V1 +

(7)
+AF (1'0, tm—i—1/2a Vm(tm+1/2)0, Vvt:;rl/z ()O) )

A m—+1 A m—+1 A m+1
“opa AoVt +(1+mA°>V% T gV =
A A . A -
= g Vit gade i+1+<1hz‘4°>vi + ®)

m41/2

+AF (xiatm—‘rl/Qa Vm(t7n+1/2)i7 ‘/tm ()Z) ) 1= 17 e 7N - 17
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A A A A
—ﬁAoV](,”jll + (1 + Ao) Vit = +og AoV + (1 - h2A<>) V4 o)

+AF ($N7 m+1/2,Vm(tm+1/2)N,Vt?Z+l/2(')N>-

where V" " /2( ); is the result of piecewise linear interpolation with extrapolation by
continuation at the point ¢, + A/2 [3].

Theorem 2. If the exact solution of the problem (1)—(3) u(z,t), v(x,t) is four times
continuously differentiable with respect to x, twice continuously differentiable with re-
spect to t and conditions a1% < 1, aQ% < 1 are met, then the error of the method
(7)—(9) has order h? + A2,
The theorem is proved using the properties of a system with a tridiagonal matrix.
The results of numerical experiments carried out on test examples and on model

examples [1] confirm the theoretical results.

2 Superdiffusion-type equations

2.1 Problem definition

Let us consider a system of equations of the superdiffusion type with fractional Riesz
derivatives with respect to space and with a functional delay of the form

3”5)-’?0 = a1 aalzﬁx + fl(x; t,u(.’l?,t),’l”(.ﬁ, ')7 U(.Z',t),’l)t(fl), ))a
8v(3a;7t) a2 Balxri" + f2(x7t7u($7t)7ut(x7 ')a U(xat)7vt(x7 ))7

where Riesz derivatives of order o (1 < av < 2) are defined by the relations

®u K(@“u(m,t) 8au(m7t)> P 1

olz|> 0, x> 0_x™ 2cosal’

where the left and right Riemann-Liouville partial derivatives of order « are defined
respectively as

X
°u(z,t) 1 d2/ e O%u(x,t) 1 d?/
8+.’L‘a - d ’ O_x - d
0
Derivatives 3‘?;‘”&, 9 81;(;&1:) nd 22 v(mat) are defined similarly.
Initial conditions ( ) and boundary conditions (3) are given.
The system (10) can be written as
oU (x,t o°U
U, 1) =Ao—— + F(x,t,U(x,t),Us(z, ")), (11)

ot oo
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2.2 Crank-Nicholson method

Let us discretize and interpolate in the same way as for diffusion equations.
To approximate the left and right fractional Riemann-Liouville derivatives, we will
use the shifted Grunwald formulas [5]

BQU(l‘i,t]‘) - 1 s

Oz T he Zgoc,kU(-ri—k-‘rla tj) + Rz’ (12)
0U (x4, t; 1Y .
# = he Y GakU(@ipr-n,t;) + Q7 (13)
- k=0

where the normalized weights are defined as

()(a=1)...(a—k+1)
k! ’

Ja,0 = 17 Ja,k = (*1)]C k:1,2,3,....
If the exact solution U(x,t) is four times continuously differentiable with respect to

x, then
IR < Ch*, Q1| < Che.

From (12)—(13) for the Riesz derivative we get the representation

N—i+1

c’)aU(mi,tj) K s
Wﬁ ha(zgakU Tj— k+17 Z gakU Titk— 1; )>+PJ (14)

If the exact solution U(x,t) is four times continuously differentiable with respect to z,

then ,
1P/ < Ch?.

Let us discretize (11) at the nodes (2, t,,41/2), applying a two-site approximation to
the middle for the time derivative, using the shifted formulas (14) for the Riesz derivative
with respect to space on the m-th and m + 1-th time layers and using piecewise linear
interpolation (with extrapolation by half a step) of the prehistory of the discrete model,
we obtain an analog of the Crank-Nicolson scheme

Vm+1 Vm i+1 i+1
B A°zTa(Zgas et D gV
N—i+1 N—i+1
+ Z orsViis—1 + Z Yo, evﬁ::ll) +F, (15)
=0 s=

1/2 .
Y :F(xi,tm+A/2,Vm(tm+1/2)i,Vth+l/2(-)i) ,i=1,...,N—1,m=0,...,M—1,
where V" (t,,11/2); is the result of piecewise linear interpolation with extrapolation by
continuation at the point ¢, + A/2, Vt’ZH/QQ)i is the history of interpolation with ex-
trapolation at this point.
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Using the formulas for numerical differentiation by the boundary and the Neumann
boundary conditions (3), we supplement the scheme (15) with the equalities

m—+1 m+1 m+1 _ m—+1 m o__ m m __ yym
Vor m = V=Vt W=t Ve = VR,

then the scheme (15) will take the form

LA .S Z + v +Z v+

A - 2]’La ga s 71— s+1 ga +1V1 ~ ga s +1
m—+1 iy m m iy m+1 (16)

Yo, ia VI A+ Z JosVits—1+ JaNn—it1VN1 + Z o s Vi1t

s=0 s=0
+ga,N_i+1v1$_+f) SRV o1 N—1,m=0,... M1
Scheme (16) is completed with initial conditions from (2)
. J — . t‘)

vi— (W= eEnb) g N i Mo 17
’ (Uf = P(zi,t5) ' J 0 (17)

The scheme (16) represents, for each fixed m, two systems of linear algebraic equations
of order N — 1.

Theorem 3. If the exact solution of the problem (10), (2), (3) u(z,t), v(x,t) is four
times continuously differentiable with respect to x and twice continuously differentiable
with respect to t, then the error of the method (16), (17) has order h + AZ?.

The theorem is proved by embedding the method in the general scheme similarly [4].
In this case, stability is proved using the Greschgorin theorem [5].
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Humenos B.TI., Jlooicnurxos A.B., Hopaeum M. HuciieHHbIE METOMBI IJIst
cucreMm uddy3uoHHBIX U cynepauddy3nOHHbIX YPABHEHUH ¢ KPAeBBIMU
yeqosusayu Hefimana u ¢ 3amasapiBaaueM. /[aJbHeBOCTOYHBIE MaTeMaTHde-
ckmit kypraJjt. 2022. T. 22. Ne 2. C. 218-224.

AHHOTAIIN S

OcobeHHOCTSIMI MHOIMX MATEeMATHYeCKUX Mojeseil (Hanmpumep, B MOJeIu
B3aMMOJICHCTBHSL OIyXOJIM U UMMYHHON CHCTEMBI) ABJISETC HAJIUUUE JIBYX
ypaBHeHUil 1udy3nOHHOIO TUIA ¢ KpaeBbiMu ycyioBusivu Helimana u 3¢-
dekra 3anazapiBaHus. B craThe CKOHCTPYUPOBAHBI U UCCJIEOBAHBI OPSIJI-
KU CXOJMMOCTH aHAJIOTOB HESIBHOTO MeTo/la u MeTosa Kpanka —Hukosscon.
Taxke a9 cucTeMbl APOOHBIX IO IPOCTPAHCTBY ypaBHeHwmit cynepauddy-
3MOHHOIO THUIA C 3ala3/bIBAHUEM W KpaeBbIMU ycjoBusimu HelimaHa mo-
crpoer aHasior Merona Kpanka—Hukosbcon. st anmpokcumanuu JIByX-
CTOPOHHUX JIPOOHBIX MPOM3BO/IHBIX Prcca npuMeHeHb! ¢/IBUHY ThIE (hOPMYJIIBI
I'prounBasnbna — JlernukoBa, qs yduera 3ddexra 3ama3apblBanns IPIMEHEHbI
WHTEPIOJISIUS U SKCTPAIOIANNA JUCKPETHOM TPEIBICTOPUNA MOJIEJIN.

Kirouessie cioBa: cucmemvr dudysuornnux ypasuerut, yeaosus Hetimana,
3anasdueanue, cynepduddysus, memod Kpanka — Hurxoavcon.
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