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Optimization method for solving
the inverse problem of complex heat transfer

An optimization method for solving the inverse problem for stationary equations
of complex heat transfer with an unspecified boundary condition for the radiation
intensity on part of the boundary and an overdetermination condition on the other
part of the boundary is proposed. An analysis of a boundary optimal control problem
is presented and it is shown that the sequence of solutions of control problems
converges to the solution of the inverse problem.
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1 Inverse problem

In a Lipschitz bounded domain  C R?® with the boundary I' := 02, we consider the
following system of non-linear equations [1]:

—al0 + brg(10]6° — 0) =0, —alp+ka(p—10]6%) =0, z € Q. (1)

Here, 6 is the normalized temperature, ¢ the normalized averaged intensity of radiation.
Positive parameters a, b, k,, and « describing inner properties of the medium are given [1].
Suppose that I' = T'; UTy such that I'y NIy = (. At the boundary I', we set the heat

flow gp,
a0nb =qp, x€l. (2)

The boundary condition for the intensity of radiation at I'; is not given. As an overter-
mination condition, at the boundary I'y, we set the following conditions:

adnp+7(p—0) =0, 0=0, xecTy. (3)

Here, 0,, denotes the derivative in the direction of the outward normal n.

L Far Eastern Federal University, Far Eastern Center for Research and Education in Mathematics,
Russia, 690922, Vladivostok, Russky Island, Ajax Bay 10.
E-mail: mesenev_pr@dvfu.ru (P.R. Mesenev).



82 P.R. Mesenev

The optimization method for solving the problem (1)—(3) is to consider the problem
of boundary optimal control for an equivalent system of elliptic equations.

Define a new unknown function ¢ = af + aby. Adding the first equation in (1) with
the second one multiplied by b, we conclude that 1 is a harmonic function. Eliminating
¢ from the first equation in (1) and using the boundary conditions (2) and (3), we obtain
the boundary value problem

—al\b + g(0) = %w, AYp=0, z€9Q, (4)
adp =q, on I', adp,p+yY=r, =0, on I'. (5)

Here, g(0) = bro|0]6° + ar.0/a, 7= abyb} + ag, + ay0y.
The optimal control problem, which approximates the problem (4), (5), is to find a
triple {6, ¥, ux} such that
1 5 A 9 .
Jrn(0,u) = 3 (0 — 0p)*dl + 5 v dl' — inf,

Fl FQ
—adf+g(0) = Zv,  Av=0, z€Q,
a0 + 560 = qp + sy, adptp +y¢ =1 on Ty, adpl =qy,, adptp =u on I'y. (6)

Here, A, s > 0 are regularizing parameters.

2 Solvability of the control problem

Let U = L?(T';) is the space of controls, H = L?(Q), V = HY(Q) = W4(2), and V' the
dual of V. Then we identify H with its dual space H' such that V ¢ H = H' C V’, and
denote by ||+ || the norm in H, and by (f,v) the value of functional f € V’ on the element
v € V coinciding with the inner product in H if f € H.

Assume that the following conditions hold:

(1) a, b, a, ke, A\, s = Const > 0,

(i) 0<n~o<~e LX), Oy,re LTy, g€ L2(D).

Let A12:V — V', By: L*(Ty) — V/, By: U — V' such that for any y,z € V,
f,ve L*Ty), and h,w € U

(Ary,2) = a(Vy, V) + s / yzdl, (Asy,2) = a(Vy,Vz) + / gz dl,

Fl l—‘1
(B1f,v) = /fv dl’,  (Bah,w) = /hw dr.
T T

A weak formulation of the boundary value problem, on the solutions of which the func-
tional (1) is minimized, has the form:

A19+9(9):%¢+f1, Axtp = fo + Bau, (7)



Optimization method for solving the inverse problem ... 83

where f1 = Bl(qb + sﬁb) + Bqu and fg = Bl’f'.
Let us define the constraint operator F(0,v¢,u): V xV xU — V' x V’,

Ka
F(0,9,u) ={A10 + g(0) — PR Astp — f2 — Bou}.
Problem (Py). Find a triple {0, ¥x, ux} € V x V x U such that
1 , Ao oL
Ta0,) = 216 63 aqr, + Sllully > inf, F(6,,u) = 0. ¥

Theorem 1. Let conditions (i), (ii) hold. Then there is at least one solution of the
problem (Py).

3 Optimality conditions

By the virtue of the Lagrange principle for smooth convex extremal problems [2], the
nondegeneracy of the optimality conditions is guaranteed by the condition that the image
of the derivative of the operator F(y,u), where y = {6,¢} € V xV, coincides with V' xV".
This means that the system

Kq
AE+9¢'(0) — L= a Am=a

is solvable for all § € V, q1,qo € V'. Here, ¢'(0) = 4bk,|0|> + Ka/a. From the second
equation we get n = A5 1g2. The solvability of the first equation with known n € V
obviously follows from the Lax—Milgram lemma. The validity of the remaining conditions
of the Lagrange principle is obvious.

The Lagrangian of the problem (Py) has the form

L(0,%,u,p1,p2) = JA(0,u) + (A10 + g(0) — %1/) — f1,01) + (A2 — fa — Bou,p2),

where p = {p1,p2} € V x V is a conjugate state.
Let {6, p,u} be a solution of the problem (Py). By the Lagrange principle [2, Th. 1.5],
we obtain the following equalities Yv € V, w € U:

(B1(6 — 65),0) + (Ao + g'(B)v,p1) = 0, *%(%Pl) + (A2v,p2) =0, 9)
/\(Bg’a, w) — (BQUJ,pg) = 0 (10)

From (9), (10), it follows equations for the conjugate state.

Theorem 2. Let conditions (i), (ii) hold and {5, 0, u} be a solution of the problem (P}),
then there is a unique pair {p1,p2} € V x V such that

o~

~ Ka N
Aipr+9¢'(0)pr = —B1(0 — 0y), Asps = ot AU = palr,. (11)
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4 Approximation of the inverse problem

Let us prove that if the pair {6, ¢} € V x V is a solution of the problem (1)-(3) and,
moreover, ¢ = ad,p|r, € L*(T'2), then solutions of the problem (Py) as A — +0 approx-
imate a solution of the problem (1)-(3). Note that the pair for all v € V satisfies the
equalities

a(V0,Vv) + bka(|06° — p,v) = /qbvdf, (12)
r
a(Ve, Vo) + /'yapvdf + Ka(p — |016%,v) = /'yﬁg‘vdf + /quF, (13)
I r, Is

and wherein 0|p, = 0y.

Theorem 3. Let conditions (i), (ii) hold and there is a solution of the problem (1)—(3)
satisfying the equalities (12) and (13). If {0x, ¥, ux} is a solution of the problem (P)
for A > 0, then there is a sequence A — +0 such that 0y — 0., (¥x — aby)/ab = @,
weakly in V', strongly in H, where 0., . Is a solution of the problem (1)—(3).
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AHHOTAIINS

IIpeamoxken oNTUMHU3AIIMOHHBI METO/, PEIIEHNsT 0OPaTHOM! 3a1a91 JIJIs CTa~
[IMOHAPHBIX yPABHEHMI CJIOKHOIO TEIIOOOMeHa C He3aJaHHBIM KPAeBbIM
YCJIOBUEM JIjIsI MHTEHCUBHOCTHU M3JIy4YeHUsI Ha YACTU T'PAHUIIBI U YCJIOBUEM
repeornpeie/ieHns Ha APyTroi YacTu rpanuiibl. [Ipeacrapien anaan3 3a1a4m
TPAHUYIHOI'O ONTHUMAJILHOTO YIPAaBJIEHUA W IMMOKA3aHO, YTO MOCJIEI0BATEhH-
HOCTB DEIeHnil 3a/1a49 YIPABIEHUS CXOIUTCS K PEIIeHNI0 OOPATHON 3a/1a4u.

Kutrouesbie cioBa: ypasHerus paduayuonio-KonoyKmueHo20 meniooomena,
dupdysuonnoe npubausicenue, obpamuas 3adava, 3adaua ONMUMAALHOZO0
YNPAGACHUA.



