..

2017, 1, . 11-21


N- . , .

:
, ,

( PDF)

[1] A.A. Maradudin, E.W Montroll, G.H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York, 1963.
[2] A. Dhar, K. Saito, Heat Transport in Harmonic Systems, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 39105.
[3] I. Fujiwara, P.C. Hemmer, H. Wergeland, Some Exact Results in the Theory of Brownian Motion, Prog. Theor. Phya. Suppl., 3738, (1966), 141152.
[4] R.J. Rubin, Momentum Autocorrelation Function of a Heavy Particle in a Finite Crystal, Journal of the American Chemical Society, 90:12, (1968), 30613063.
[5] M.B.Yu, Momentum autocorrelation function of an impurity in a classical oscillator chain with alternating masses III. Some limiting cases, Physica A, 447, (2016), 411421.
[6] P. Mazur, E. Montroll, Poincare Cycles, Ergodicity, and Irreversibility in Assemblies of Coupled Harmonic Oscillators, J. Math. Phys., 1:1, (1960), 7084.
[7] M.H. Lee, Local Dynamics in an Infinite Harmonic Chain, Symmetry, 8:22, (2016), 112.
[8] M.A. Huerta, H.S. Robertson, Entropy, Information Theory, and the Approach to Equilibrium of Coupled Harmonic Oscillator Systems, J. Stat. Phys., 1:3, (1969), 393414.
[9] A.J. OConnor, A Central Limit Theorem for the Disordered Harmonic Chain, Commun. math. Phys., 45, (1975), 6377.
[10] Z. Rieder, J.L. Lebowitz, E. Lieb, Properties of a harmonic crystal in a stationary nonequilibrium state, J. Math. Phys., 8:5, (1967), 10731078.
[11] R.J. Rubin, W.L. Greer, Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal, J. Math. Phys., 12:8, (1971), 16861701.
[12] F. Bonetto, J.L. Lebowitz, L. Rey-Bellet, Fourier law: a challenge to theorists, Mathematical Physics 2000, eds. A. Fokas, et al., Imperial College Press, London, 2000, 128.
[13] S. Lepri, R. Livi, A. Politi, Heat Transport in Low Dimensions: Introduction and Phenomenology, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 137.
[14] C.-W. Chang, Experimental Probing of Non-Fourier Thermal Conductors, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 305338.
[15] V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991.
[16] V. Spiridonov, A. Zhedanov, Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods and Applications of Analysis, 2:4, (1995), 369398.
[17] V. Spiridonov, A. Zhedanov, Discrete Reflectionless Potentials, Quantum Algebras, and q-Orthogonal Polynomials, Annals of physics, 237, (1995), 126146.