Far Eastern Mathematical Journal

To content of the issue


On uniqueness of solutions of control problems for the stationary model of viscous magnetic hydrodynamics


G. V. Alekseev

2004, issue 1, Ń. 142–157


Abstract
Control problems for the stationary model of viscous magnetic hydrodynamics under inhomogeneous boundary conditions for the velocity and electromagnetic field are considered. These problems consist of minimization of certain cost functionals dependent on weak solutions of the boundary value problems. The sufficient conditions of the regularity of the Lagrange multipliers and the local uniqueness of the solutions of the control problems are deduced.

Keywords:
magnetic hydrodynamics, viscous fluid, control problems, optimality systems, local regularity

Download the article (PDF-file)

References

[1] L. D. Landau, E. M. Lifshic, Teoreticheskaya fizika, t. 8, E'lektrodinamika sploshnyx sred, Nauka, M., 1982, 624 s.
[2] G. V. Alekseev, Teoreticheskij analiz obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj neszhimaemoj zhidkosti, Preprint ą 1. IPM DVO RAN, Dal'nauka, Vladivostok, 2002, 78 s.
[3] L. S. Hou, A. J. Meir, “Boundary optimal control of MHD flows”, Appl. Math. Opt., 32 (1995), 143–162.
[4] G. V. Alekseev, “Zadachi upravleniya dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj neszhimaemoj zhidkosti”, Prikl. mex. texn. fiz., 44:6 (2003), 170–179.
[5] G. V. Alekseev, “Zadachi upravleniya dlya stacionarnyx uravnenij magnitnoj gidrodinamiki”, Dokl. RAN, 395:3 (2004), 322–325.
[6] G. V. Alekseev, “Razreshimost' zadach upravleniya dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj zhidkosti”, Sib. mat. zhurn., 45:2 (2004), 243–262.
[7] A. J. Meir, “The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions”, Comp. Math. Applic., 25 (1993), 13–29.
[8] G. V. Alekseev, R. V. Brizickij, “Razreshimost' smeshannoj zadachi dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj zhidkosti”, Dal'nevost. mat. zhurn., 3:2 (2002), 285–301.
[9] G. V. Alekseev, R. V. Brizickij, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj zhidkosti so smeshannymi granichnymi usloviyami”, Dal'nevost. mat. zhurn., 4:1 (2003), 108–126.
[10] R. V. Brizickij, “O regulyarnosti i edinstvennosti reshenij zadach upravleniya dlya stacionarnyx uravnenij MGD vyazkoj zhidkosti so smeshannymi granichnymi usloviyami”, Dal'nevost. mat. zhurn., 4:2 (2003), 264–275.
[11] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, University of Toronto, Galamen, 1995.
[12] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of $H(\rot ;\Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178.
[13] L. Hou, S. Ravindran, “Computations of boundary optimal control problems for an electrically conducting fluid”, J. Comp. Phys., 128 (1996), 319–330.
[14] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991.
[15] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986.

To content of the issue