Far Eastern Mathematical Journal

To content of the issue


Extremal properties of Chebyshev polynomials


V. N. Dubinin, S. I. Kalmykov

2004, issue 2, Ñ. 169–177


Abstract
Using methods of geometric function theory, we get new extremal properties of Chebyshev polynomials. The exact estimates of coefficients, covering and distortion theorems for polynomials with real coefficients and curved majorants on the interval are obtained. In each case, the extremal is Chebyshov polynomial of second, third or fourth kind. These theorems refine some classical results for algebraic polynomials with constraints on the the interval. As a corollary, we get the following analog of Schur's inequality
$$
\max\{|P(x)|: x \in [?1,1]\} \le (2n+1) \max\{| P(x) \sqrt{(1+x)/2} | : x \in [?1,1]\},
$$
where $P(x)$ is the polynomial of degree $n$ with real coefficients. The equality holds for Chebyshev polynomial of the third kind.

Keywords:
Chebyshev polynomial, polynomial nequality, Bernstein's inequality, Schur's inequality

Download the article (PDF-file)

References

[1] Ya. L. Geronimus, Teoriya ortogonal'nyx mnogochlenov, GITTL, M., 1950.
[2] G. Sege, Ortogonal'nye mnogochleny, GIFML, M., 1962.
[3] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funkcij kompleksnogo peremennogo, Nauka, M.-L., 1964.
[4] V. I. Lebedev, Funkcional'nyj analiz i vychislitel'naya matematika, Fizmatlit, M., 2000.
[5] V. V. Prasolov, Mnogochleny, MCNMO, M., 2003.
[6] P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995.
[7] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskix polinomov”, Algebra i analiz, 13:5 (2001), 16–43.
[8] V. N. Dubinin, A. V. Olesov, “O primenenii konformnyx otobrazhenij k neravenstvam dlya polinomov”, Zap. nauchn. semin. POMI, 286, 2002, 85–102.
[9] Q. I. Rahman, “On a problem of Turan about polynomials with curved majorants”, Trans. Amer. Math. Soc., 163 (1972), 447–455.
[10] M. A. Lachance, “Bernstein and Markov inequalities for constrained polynomials”, Lect. Notes Math., 1045, 1984, 125–135.
[11] N. A. Lebedev, Princip ploshhadej v teorii odnolistnyx funkcij, Nauka, M., 1975.
[12] G. M. Goluzin, Geometricheskaya teoriya funkcij kompleksnogo peremennogo, Nauka, M., 1966.

To content of the issue