Far Eastern Mathematical Journal

To content of the issue


The solvability of stationary boundary problem for model of the granular medium


A. A. Illarionov, A. Yu. Chebotarev

2004, issue 2, Ń. 178–183


Abstract
The solvability of the boundary problem for equations describing the stationary moving of incompressible medium with inner degrees of freedom is proved.

Keywords:
Navier-Stokes equation, model of the granular medium, weak solution

Download the article (PDF-file)

References

[1] V. D. Lelyux, E. N. Nenashev, “K teorii dvizheniya sypuchej sredy v nepodvizhnoj gazovoj faze”, Primenenie analiticheskix i chislennyx metodov v mexanike zhidkix i sypuchix sred, Uch. zap. Gor'kov. un-ta. Ser. Mexanika, 156, Gor'kij, 1972, 4–20.
[2] S. N. Antoncev, V. D. Lelyux, “O razreshimosti nachal'no-kraevoj zadachi v odnoj modeli dinamiki sredy s vnutrennimi stepenyami svobody”, Dinamika sploshnoj sredy, 1972, ą 12, 26–51.
[3] S. N. Antoncev, A. V. Kazhixov, V. N. Monaxov, Kraevye zadachi mexaniki neodnorodnyx zhidkostej, Nauka, Novosibirsk, 1983, 319 s.
[4] N. N. Frolov, “O razreshimosti kraevoj zadachi dvizheniya neodnorodnoj zhidkosti”, Matem. zametki, 53:6 (1993), 130–140.
[5] N. N. Frolov, “Kraevaya zadacha, opisyvayushhaya dvizhenie neodnorodnoj zhidkosti”, Sib. mat. zhurn., 37:2 (1996), 433–451.
[6] A. Yu. Chebotarev, “Stacionarnye variacionnye neravenstva v modeli neodnorodnoj zhidkosti”, Sib. mat. zhurn., 38:5 (1997), 1185–1193.
[7] V. Girault, P. Raviart, Finite element methods for Navier – Stokes equations, Springer-Verlag, New York, 1986.
[8] D. Gilbarg, M. Trudinger, E'llipticheskie differencial'nye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 s.
[9] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoj neszhimaemoj zhidkosti, Nauka, M., 1970, 288 s.

To content of the issue