Far Eastern Mathematical Journal

To content of the issue


Numerical analysis of the inverse identification problem for the lower coefficient of an elliptic equation


E. A. Kalinina

2005, issue 1-2, Ñ. 57–70


Abstract
In this paper the inverse problem of identification of a coefficient in the two-dimensional stationary equation of diffusion – reaction is considered. For the solution of this problem the numerical algorithm is developed which is based on the two-layer gradient algorithm. Theoretical aspects and the convergence of the algorithm are discussed. The results of numerical experiments are analyzed in details.

Keywords:
elliptic equation, inverse extremal problem, coefficient identification, gradient algorithm, pollutant transfer

Download the article (PDF-file)

References

[1] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa”, Dokl. RAN, 375:3 (2000), 315–319.
[2] C. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468.
[3] G. V. Alekseev, E'. A. Adomavichyus, “Issledovanie obratnyx e'kstremal'nyx zadach dlya nelinejnyx stacionarnyx uravnenij perenosa veshhestva”, Dal'nevost. mat. zhurn., 3:1 (2002), 79–92.
[4] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394.
[5] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991.
[6] A. N. Tixonov, V. Ya. Arsenin, Metody resheniya nekorrektnyx zadach, Nauka, M., 1979.
[7] A. G. Fatullayev, “Determination of unknown coefficient in nonlinear diffusion equation”, Nonlinear Analysis, 44 (2001), 337–344.
[8] A. G. Fatullayev, “Numerical procedure for the determination of an unknown coefficients in parabolic equations”, Comp. Phys. Comm., 144 (2002), 29–33.
[9] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 13 (1997), 995–1013.
[10] A. Shidfar, K. Tavakoli, “An inverse heat conduction problem”, South. Asian Bull. Math., 26 (2002), 503–507.
[11] M. Dehghan, “Finding a control parameter in one-dimensional parabolic equations”, Appl. Math. Comp., 135 (2003), 491–503.
[12] A. A. Samarskij, P. N. Vabishhevich, Chislennye metody resheniya obratnyx zadach matematicheskoj fiziki, Moskva, 2004, 480 s.
[13] B. Lowe, W. Rundell, “The determination of a coefficient in an elliptic equation from average flux data”, J. Comput. Math., 70 (1996), 173–187.
[14] D. A. Tereshko, “Chislennoe reshenie zadach identifikacii parametrov primesi dlya stacionarnyx uravnenij massoperenosa”, Vych. texn., 9:4, Spec. vyp. (2004), 92–98.
[15] A. Capatina, R. Stavre, “Numerical analysis of a control problem in heat conducting Navier – Stokes fluid”, Int. J. Eng. Sci., 34:13 (1996), 1467–1476.
[16] A. D. Ioffe, V. M. Tixomirov, Teoriya e'kstremal'nyx zadach, Nauka, M., 1974, 480 s.
[17] V. A. Trenogin, Funkcional'nyj analiz, Nauka, M., 1980, 496 s.

To content of the issue