Far Eastern Mathematical Journal

To content of the issue


About regularity of propagation of boundary perturbation fronts withing thin layers


D. N. Lozitsky, V. E. Ragozina

2005, issue 1-2, Ñ. 106–111


Abstract
Following the shock compatibility condition on moving front surfaces withing elastic layers with an arbitrary geometry and a small thickness, attenuation equations for wave strengthes were found and analysed for shocks depending on the wave curvature and the wave front curvature.

Keywords:
shock waves, plane stess state model, strain compatibility conditions, arbitrary shape layers

Download the article (PDF-file)

References

[1] V. Novackij, Teoriya uprugosti, Mir, M., 1975, 872 s.
[2] D. Blend, Nelinejnaya dinamicheskaya teoriya uprugosti, Mir, M., 1972, 183 s.
[3] A. A. Burenin, A. R. Chernyshev, “Udarnye volny v izotropnom uprugom prostranstve”, PMM, 42:4 (1978), 711–717.
[4] N. D. Vervejko, “Uprugie volny v tonkix obolochkax”, Tr. NII matematiki Voronezh. un-ta, 21 (1975), 18–20.
[5] N. D. Vervejko, “Rasprostranenie voln v tonkix uprugo-vyazko-plasticheskix sloyax”, Prikladnaya mexanika, 21:12 (1985), 63–67.
[6] G. I. Bykovcev, D. D. Ivlev, Teoriya plastichnosti, Dal'nauka, Vladivostok, 1998, 528 s.
[7] E. A. Gerasimenko, V. E. Ragozina, “Geometricheskie i kinematicheskie ogranicheniya na razryvy funkcij na dvizhushhixsya poverxnostyax”, Dal'nevost. mat. Zhurn., 5:1 (2004), 100–109.

To content of the issue