Far Eastern Mathematical Journal

To content of the issue

About regularity of propagation of boundary perturbation fronts withing thin layers

D. N. Lozitsky, V. E. Ragozina

2005, issue 1-2, P.

Following the shock compatibility condition on moving front surfaces withing elastic layers with an arbitrary geometry and a small thickness, attenuation equations for wave strengthes were found and analysed for shocks depending on the wave curvature and the wave front curvature.

shock waves, plane stess state model, strain compatibility conditions, arbitrary shape layers

Download the article (PDF-file)


[1] V. Novackij, Teoriya uprugosti, Mir, M., 1975, 872 s.
[2] D. Blend, Nelinejnaya dinamicheskaya teoriya uprugosti, Mir, M., 1972, 183 s.
[3] A. A. Burenin, A. R. Chernyshev, “Udarnye volny v izotropnom uprugom prostranstve”, PMM, 42:4 (1978), 711–717.
[4] N. D. Vervejko, “Uprugie volny v tonkix obolochkax”, Tr. NII matematiki Voronezh. un-ta, 21 (1975), 18–20.
[5] N. D. Vervejko, “Rasprostranenie voln v tonkix uprugo-vyazko-plasticheskix sloyax”, Prikladnaya mexanika, 21:12 (1985), 63–67.
[6] G. I. Bykovcev, D. D. Ivlev, Teoriya plastichnosti, Dal'nauka, Vladivostok, 1998, 528 s.
[7] E. A. Gerasimenko, V. E. Ragozina, “Geometricheskie i kinematicheskie ogranicheniya na razryvy funkcij na dvizhushhixsya poverxnostyax”, Dal'nevost. mat. Zhurn., 5:1 (2004), 100–109.

To content of the issue