Far Eastern Mathematical Journal

To content of the issue


Numerical model of the two-phase medium weak compressible matrix and some geophysical applications


V. V. Pack

2007, issue 1-2, Ñ. 79–90


Abstract
Since the Boussinesq approximation cannot be applicable to model accumulation of a liquid phase (fluid) within a matrix the numerical model of two-phase medium with weak compressible matrix has been developed. Because of weak compressibility there is a lot of computational difficulties to solve the system of equations by a numerical method with sufficient accuracy. Therefore it has been obtained an asymptotical solution including the Boussinesq approximation as zero-order one. The finite element technique combined with the modified project gradient method is applied to obtain numerical solution for zero-order and following approximations. This method has considerable advantages in accuracy, stability and speed of response in comparison with penalty method and modified Lagrange function method. There has been fulfilled numerical modeling of a fluid accumulation within compressible matrix affected by the upper boundary's relief and variation of the fluid flow's distribution on the lower boundary. The model shear strain field are shown to be different in comparison with Boussinesq approximation. Some features of shear strain distribution have been studied analytically. Several geophysical applications of these model results is presented.

Keywords:
multi-phase heterogeneous media, creeping flow, viscosity, porosity, consolidation, finite element method

Download the article (PDF-file)

References

[1] E. V. Artyushkov, Fizicheskaya tektonika, Nauka, M., 1993, 456 s.
[2] V. L. Bezverxnij, V. V. Pak, “Flyuidodinamika i tektogenez Zapadno-Tixookeanskoj zony perexoda”, Vestnik DVO RAN, 2003, ¹ 4, 132–140.
[3] Yu. M. Danilin, “O minimizacii funkcii v zadachax s ogranicheniyami tipa ravenstv”, Kibernetika, 1971, ¹ 2, 88–95.
[4] V. B. Zanemonec, V. D. Kotelkin, V. P. Myasnikov, “O dinamike litosfernyx dvizhenij”, Izv. AN SSSR. Fiz. Zemli, 1974, ¹ 5, 43–54.
[5] A. V. Karakin, “Modeli flyuidodinamiki zemnoj kory s neuprugim skeletom”, Izv. AN SSSR, Fizika Zemli, 1990, ¹ 2, 3–15.
[6] A. V. Karakin, L. I. Lobkovskij, “Gidrodinamika i struktura dvuxfaznoj astenosfery”, Dokl. AN SSSR, 268:2 (1983), 324–329.
[7] A. V. Kiryuxin, V. M. Sugrobov, Modeli teploperenosa v gidrotermal'nyx sistemax Kamchatki, Nauka, M., 1987, 149 s.
[8] G. I. Marchuk, Metody vychislitel'noj matematiki, Nauka, Novosibirsk, 1978, 536 s.
[9] R. I. Nigmatullin, Dinamika mnogofaznyx sred, t. 1, Nauka, M., 1987, 464 s.
[10] V. V. Pak, “Priblizhennyj metod rascheta medlennyx techenij neodnorodnoj vyazkoj neszhimaemoj zhidkosti”, Matematicheskoe modelirovanie i vychislitel'nyj e'ksperiment, Voprosy vychisl. i prikl. matematiki, 85, RISO AN UzSSR, Tashkent, 1988, 11–22.
[11] V. V. Pak, V. L. Bezverxnij, K. G. Kupcov, E. V. Belolipceva, “E'volyuciya teplovogo polya i fil'traciya flyuidov v aktivnyx zonax perexoda ot kontinenta k okeanu (chislennoe modelirovanie)”, V sb. “Informatika v okeanologii”, 1996, 38–47.
[12] I. D. Ryabchikov, “Flyuidy v mantii Zemli”, Priroda, 1988, ¹ 13, 12–16.
[13] R. Temam, Uravneniya Nav'e – Stoksa. Teoriya i chislennyj analiz, Mir, M., 1981, 408 s.
[14] D. Terkot, Dzh. Shubert, Geodinamika, t. 2, Geologicheskoe prilozhenie fiziki sploshnyx sred, Mir, M., 1985, 360 s.
[15] V. P. Trubicyn, E. V. Xarybin, “Konvektivnaya neustojchivost' rezhima sedimentacii v mantii”, Izv. AN SSSR. Fizika Zemli, 1987, ¹ 8, 21–30.
[16] Yu. V. Xachaj, “Konvektivnaya ustojchivost' szhimaemoj zhidkosti dlya plotnostnyx modelej verxnej mantii Zemli”, Izv. AN SSSR. Fizika Zemli, 1987, ¹ 8, 36–40.
[17] W. D. Woidt, “Finite element calculations applied to saltdome analysis”, Tectonophysics, 50:2 (1978), 369–386.

To content of the issue