Far Eastern Mathematical Journal

To content of the issue


The problem of acoustic sounding within fluctuation ocean


I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov

2011, issue 1, Ń. 76–87


Abstract
The work is devoted to the problems of acoustic tomography in random media. In terms of a model based on the non-stationary transfer equation energy density of acoustic waves, the problem of acoustic location from measurement data that correspond to the schema of the side-looking sonar.

Keywords:
transfer equation, acoustic tomography

Download the article (PDF-file)

References

[1] M. D. Ageev, L. V. Kiselev, Iu. V. Matvienko i dr., Avtonomnye podvodnye roboty: sistemy i tekhnologii, pod obshch. red. M. D. Ageeva, Nauka, M., 2005, 398 s.
[2] W. W. Bonifant (Jr.), Interferometic synthetic aperture sonar processing, A thesis presented to the Academic Faculty in partial fulfillment of the requirements for the Degree Master of Science in Electrical Engineering, Georgia Institute of Technology, 1999, xxv+166 s.
[3] V. V. Zolotarev, “Gidrolokatory s sintezirovannoi aperturoi dlia avtonomnogo podvodnogo robota”, Podvodnye issledovaniia i robototekhnika, 1(3) (2007), 21–26.
[4] Iu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknaria, E. V. Tutynin, “Puti sovershenstvovaniia gidroakusticheskikh tekhnologii obsledovaniia morskogo dna s ispol'zovaniem avtonomnykh neobitaemykh podvodnykh apparatov”, Podvodnye issledovaniia i robototekhnika, 2(8) (2008), 4–15.
[5] Iu. N. Barabanenkov, Iu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Sostoianie rasprostraneniia voln v sluchaino-neodnorodnoi srede”, Uspekhi fiz. nauk, 102:1 (1970), 3–42.
[6] A. Isimaru, Rasprostranenie i rasseianie voln v sluchaino-neodnorodnykh sredakh, t. 1, 2, Mir, M., 1981.
[7] L. A. Apresian, Iu. A. Kravtsov, Teoriia perenosa izlucheniia, Nauka, M., 1983, 216 s.
[8] I. O. Iaroshchuk, O. E. Gulin, Metod statisticheskogo modelirovaniia v zadachakh gidroakustiki, Dal'nauka, Vladivostok, 2002, 352 s.
[9] Spravochnik po gidroakustike, red. A. E. Kolesnikov, Sudostroenie, L., 1982, 344 s.
[10] P. Miln, Podvodnye inzhenernye issledovaniia, Sudostroenie, L., 1984, 340 s.
[11] K. Klei, G. Medvin, Akusticheskaia okeanografiia, Mir, M., 1980, 582 s.
[12] G. Bal, J. B. Keller, G. Papanicolaou, and L. Ryzhik, “Transport theory for acoustic waves with reflection and transmission at interfaces”, Wave Motion, 30 (1999), 303–327.
[13] G. Bal, “Kinetics of scalar wave fields in random media”, Wave Motion, 43 (2005), 132–157.
[14] G. Bal, “Radiative transfer equations with varying refractive index: a mathematical perspective”, J. Opt. Soc. Am. A, 23:7 (2006), 1639–1644.
[15] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlia uravneniia perenosa izlucheniia s obobshchennymi usloviiami sopriazheniia na granitse razdela sred”, Izvestiia RAN. Seriia matematicheskaia, 67:6 (2003), 169–192.
[16] I. V. Prokhorov, “O strukture mnozhestva nepreryvnosti resheniia kraevoi zadachi dlia uravneniia perenosa izlucheniia”, Matematicheskie zametki, 86:2 (2009), 256–272.
[17] J. Voigt, “Positivity in time dependent linear transport theory”, Acta Applicandae Mathematicae, 2 (1984), 311–331.
[18] N. B. Maslova, “Matematicheskie metody issledovaniia uravneniia Bol'tsmana”, Algebra i analiz, 3:1 (1991), 3–56.
[19] V. R. Kireitov, “Mnogoskorostnoi potentsial paierlsa v zadache utochneniia klassicheskogo fundamental'nogo akusticheskogo potentsiala vblizi istochnika zvuka v odnorodnom maksvellovskom gaze”, Sibirskii matematicheskii zhurnal, 40:4 (1999), 834–860.
[20] I. V. Prokhorov, I. P. Yarovenko, V. G. Nazarov, “Optical tomography problems at layered media”, Inverse Problems, 24:2 (2008), 025019, 13 pp.
[21] I. V. Prokhorov, “Opredelenie poverkhnosti razdela sred po dannym tomograficheskogo prosvechivaniia”, Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 42:10 (2002), 1542–1555.

To content of the issue