Far Eastern Mathematical Journal

To content of the issue


Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory


V. M. Sadovskii

2011, issue 2, Ń. 201–212


Abstract
Mathematical model of micropolar elastic medium under finite strains is reduced to a thermodynamically consistent system of conservation laws, on the basis of which can be obtained integral estimates, guaranteeing the uniqueness and continuous dependence “in the small” of solutions of the Cauchy problem and the boundary-value problems with dissipative boundary conditions, and a correct description of generalized solutions with strong discontinuities is given.

Keywords:
micropolar medium, finite strains, couple stresses, conservation laws, a priori estimates

Download the article (PDF-file)

References

[1] E. Cosserat, F. Cosserat, “Theorie des Corps Deformables”, Chwolson's Traite? Physique, 2nd ed., Paris, 1909, 953–1173.
[2] V. A. Pal'mov, “Osnovnye uravneniia teorii nesimmetrichnoi uprugosti”, Prikl. matem. i mekhan., 28:3 (1964), 401–408.
[3] V. T. Koiter, “Momentnye napriazheniia v teorii uprugosti”, Mekhanika: Sb. perevodov, 1965, ¹ 3, 89–112.
[4] E. L. Aero, A. N. Bulygin, E. V. Kuvshinskii, “Asimmetricheskaia gidromekhanika”, Prikl. matem. i mekhan., 29:2 (1965), 297–308.
[5] E. L. Aero, A. N. Bulygin, “Uravneniia dvizheniia nematicheskikh zhidkikh kristallov”, Prikl. matem. i mekhan., 35:5 (1971), 879–891.
[6] E. L. Aero, A. N. Bulygin, “Kinematika nematicheskikh zhidkikh kristallov”, Prikl. mekhanika, VIII:3 (1972), 97–105.
[7] A. G. Kalugin, Mekhanika anizotropnykh zhidkostei, Izd-vo Tsentra prikladnykh issledovanii pri mekh.-mat. f-te MGU, M., 2005.
[8] V. I. Kondaurov, “O nelineinykh uravneniiakh dinamiki uprugoi mikropoliarnoi sredy”, Prikl. matem. i mekhan., 48:3 (1984), 404–413.
[9] A. E. Green, P. M. Naghdi, W. L. Wainwright, “A general theory of a Cosserat surface”, Arch. Rat. Mech. Anal., 20:4 (1965), 287–308.
[10] L. I. Shkutin, Mekhanika deformatsii gibkikh tel, Nauka, Sib. otd-nie, Novosibirsk, 1988.
[11] Kh. Al'tenbakh, P. A. Zhilin, “Obshchaia teoriia uprugikh prostykh obolochek”, Uspekhi mekhaniki, 11:4 (1988), 107–148.
[12] S. K. Godunov, Uravneniia matematicheskoi fiziki, Nauka, M., 1979.
[13] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniia, Nauchnaia kniga, Novosibirsk, 1998.
[14] S. K. Godunov, A. V. Zabrodin, M. Ia. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976.
[15] A. G. Kulikovskii, N. V. Pogorelov, A. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001.
[16] O. V. Sadovskaia, V. M. Sadovskii, Matematicheskoe modelirovanie v zadachakh mekhaniki sypuchikh sred, Fizmatlit, M., 2008.
[17] S. K. Godunov, I. M. Peshkov, “Simmetricheskie giperbolicheskie uravneniia nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1034–1055.
[18] A. G. Kulikovskii, E. I. Sveshnikova, Nelineinye volny v uprugikh sredakh, Moskovskii litsei, M., 1998.
[19] V. M. Sadovskii, Razryvnye resheniia v zadachakh dinamiki uprugoplasticheskikh sred, Fizmatlit, M., 1997.

To content of the issue