Far Eastern Mathematical Journal

To content of the issue


Projection method for the solution of a problem for a quasilinear parabolic equation in a noncylindrical domain with $W^1_2$ boundary


K. V. Lisenkov

2012, issue 1, Ń. 48–59


Abstract
This article investigates the boundary value problem for the quasilinear parabolic equation in noncylindrical domain. The existence and uniqueness are proved. The approximate solution built according to projection method. We use methods of compactness for functions from Banach space scale.

Keywords:
noncylindrical domain, quasilinear parabolic equation, compactness theorem, existence theorem, projection method

Download the article (PDF-file)

References

[1] N.E.Istomina, A.G.Podgaev, “O razreshimosti zadachi dlia kvazilineinogo vyrozhdaiushchegosia parabolicheskogo uravneniia v oblasti s netsilindricheskoi granitsei”, Dal'nevost. matem. zhurn., 1:1 (2000), 63–73.
[2] P. V. Vinogradova, A. G. Zarubin, “O metode Galerkina dlia kvazilineinykh parabolicheskikh uravnenii v netsilindricheskoi oblasti”, Dal'nevost. matem. zhurn., 3:1 (2002), 3–17.
[3] J. Ferreira, N.A. Lar'kin, “Global solvability of a mixed problem for a nonlinear hyperbolic-parabolic equation in noncylindrical domains”, Portugaliae mathematica, 53:4 (1996), 381-395.
[4] S. N. Glazatov, “O nekotorykh zadachakh dlia dvazhdy nelineinykh parabolicheskikh uravnenii i uravnenii peremennogo tipa”, Matem. tr., 3:2 (2000), 71–110.
[5] E. A. Baderko, “O razreshimosti granichnykh zadach dlia parabolicheskikh uravnenii vysokogo poriadka v oblastiakh s krivolineinymi bokovymi granitsami”, Differentsial'nye uravneniia, 12:10 (1976), 1780–1792.
[6] Iu. A. Dubinskii, “Nelineinye ellipticheskie i parabolicheskie uravneniia”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 9, 1976, 1–130.
[7] A. G. Podgaev, “Ob otnositel'noi kompaktnosti mnozhestva abstraktnykh funktsii iz shkaly banakhovykh prostranstv”, Sib. matem. zhurn., 34:2 (1993), 135–145.
[8] Zh.L. Lions, Nekotorye metody resheniia nelineinykh kraevykh zadach, Mir, M., 1972, 587 s.
[9] Ladyzhenskaia O.A., Solonnikov V.A., Ural'tseva N.N., Lineinye i kvazilineinye uravneniia parabolicheskogo tipa, Nauka, M., 1967, 736 s.

To content of the issue