Far Eastern Mathematical Journal

To content of the issue


Inequalities for Modulus of Rational Functions


S. I. Kalmykov

2012, issue 2, Ñ. 231–236


Abstract
Inequalities for modulus of rational functions with prescribed poles lying in the exterior of the unit disk were obtained in this research. The case when the rational function has no zeros in the unit disk has also been considered.

Keywords:
inequalities for rational functions, Blaschke product, Schwarz lemma

Download the article (PDF-file)

References

[1] N. C. Ankeny, T. J. Rivlin, “On a theorem of S. Bernstein”, Pacific J. Math., 5:suppl. 2 (1955), 849–852.
[2] A. A. Gonchar, “Otsenki rosta ratsional'nykh funktsii i nekotorye ikh prilozheniia”, Matem. sb., 72(114):3 (1967), 489–503.
[3] N. K. Govil, R. N. Mohapatra, “Inequalities for Maximum Modulus of Ratioanl Functions with Prescribed Poles”, Approximation Theory: In Memory of A. K. Varma, Marcel Dekker, Inc., New York, 1998, 255–263.
[4] M. A. Qazi, “On the maximum modulus of polynomials”, Proc. Amer. Math. Soc., 115:2 (1992), 337–349.
[5] W. M. Shah, A. Liman, “Integral estimates for the family of B-operators”, Operators and matrices, 5:1 (2011), 79–87.
[6] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, Oxford University Press, Oxford, 2002.
[7] V. N. Dubinin, “O primenenii lemmy Shvartsa k neravenstvam dlia tselykh funktsii s ogranicheniiami na nuli”, Zap. nauchn. sem. POMI, 337 (2006), 101–112.
[8] A. A. Gonchar, “O zadachakh E. I. Zolotareva, sviazannykh s ratsional'nymi funktsiiami”, Matem. sb., 78(120):4 (1969), 640–654.
[9] S. I. Kalmykov, “Ob otsenke modulia ratsional'noi funktsii”, Zap. nauchn. sem. POMI, 371 (2009), 109–116.
[10] G. M. Goluzin, Geometricheskaia teoriia funktsii kompleksnogo peremennogo, Nauka, M, 1966.
[11] N. K. Govil, Q. I. Rahman, G. Schmeisser, “On the derivative of a polynomial”, Illinois Journal of Mathematics, 23 (1979), 319–329.

To content of the issue