Far Eastern Mathematical Journal

To content of the issue

Inhomogeneous Diophantine approximation on curves with non-monotonic error function

N.V. Budarina

2013, issue 2, P. 164-178

In this paper we prove a convergent part of inhomogeneous Groshev type theorem for non–degenerate curves in Euclidean space where an error function is not necessarily monotonic. Our result naturally incorporates and generalizes the homogeneous measure theorem for non-degenerate curves. In particular, the method of Inhomogeneous Transference Principle and Sprindzuk’s method of essential and inessential domains are used in the proof.

inhomogeneous Diophantine approximation, Khintchine theorem, nondegenerate curve

Download the article (PDF-file)


[1] V. V. Beresnevich, V. I. Bernik, “On a metrical theorem of W. Schmidt”, Acta Arith., 75:3 (1996), 219-233.
[2] D. Badziahin, V. V. Beresnevich, S. Velani, “Inhomogeneous theory of dual Diophantine approximation on manifolds”, Adv. Math., 232:1 (2013), 1-35.
[3] V. V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Math. Hungar., 94 (2002), 99-130.
[4] V. V. Beresnevich, V. I. Bernik, D. Y. Kleinbock, G. A. Margulis, “Metric Diophantine approximation: the Khintchine-Groshev theorem for nondegenerate manifolds”, Mosc. Math. J., 2 (2002), 203-225.
[5] V. V. Beresnevich, “On a theorem of V. Bernik in the metric theory of Diophantine approximation”, Acta Arith., 117 (2005), 71-80.
[6] V. V. Beresnevich, S. Velani, “An inhomogeneous transference principle and Diophantine approximation”, Proc. Lond. Math. Soc., 101 (2010), 821-851.
[7] V. I. Bernik, D. Dickinson, M. Dodson, “Approximation of real numbers by values of integer polynomials”, Dokl. Nats. Akad. Nauk Belarusi, 42 (1998), 51-54.
[8] V. I. Bernik, D. Y. Kleinbock, G. A. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, Internat. Res. Notices, 9 (2001), 453-486.
[9] N. Budarina, D. Dickinson, “Diophantine approximation on non-degenerate curves with non-monotonic error function”, Bull. Lond. Math. Soc., 41 (2009), 137-146.
[10] D. Y. Kleinbock, G. A. Margulis, “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. of Math., 148 (1998), 339-360.
[11] A. Piartly, “Diophantine approximations on submanifolds of Euclidean space”, Funktsional. Anal. i Prilozhen., 3:4 (1969), 59-62.
[12] V. G. Sprindzuk, Mahler's Problem in Metric Number Theory, Transl. Math. Monogr. 25, Amer. Math. Soc., Providence, RI, 1969.

To content of the issue