Far Eastern Mathematical Journal

To content of the issue


On the K-divisibility constant in a pair of weighted $L_p$ spaces


Dmitriev A. A.

2013, issue 2, . 192-195


Abstract
An estimate $?_p\ge p^{1/p}q^{1/q}$ of the K-divisibility constant has been obtained for a pair of weighted Lp spaces. Taking into account an known estimate of the K-divisibility constant for an arbitrary pair of Banach lattices this implies that $2\le ?\le4$.

Keywords:
Banach couple, interpolation of linear operators, K-functional, K-method, constant K-divisibility

Download the article (PDF-file)

References

[1] N. Ia. Krugliak, O konstante K-delimosti pary (C;C1), Issled. po teorii funktsii mnogikh veshchestvennykh peremennykh, IaGU, Iaroslavl', 1981, 3744.
[2] T. S. Podogova, Ob odnom svoistve modulia nepreryvnosti, Issled. po teorii funktsii mnogikh veshchestvennykh peremennykh, IaGU, Iaroslavl', 1982, 8489.
[3] Yu. A. Brudnyi, N.Ya. Krugluak, Interpolation functors and interpolation spaces, North-Holland Math. Lab., 47, Elsevier Science Publ. B.V., Amsterdam, 1991.
[4] I. Berg, I. Lefstrem, Interpoliatsionnye prostranstva. Vvedenie, Mir, M., 1980.
[5] V. I. Ovchinnikov, The method of orbit in interpolation theory, Math. Rept, 1, Part 2, Harwood Acad. Publ, London, 1984.
[6] V. I. Dmitriev, V. I. Ovchinnikov, Ob interpoliatsii v prostranstvakh veshchestvennogo metoda, DAN SSSR, 46:4 (1979), 794797.
[7] L. V. Kantorovich, G. P. Akilov, Funktsional'nyi analiz, Nauka, M., 1977.
[8] Iu. Liuk, Spetsial'nye maiematicheskie funktsii i ikh aproksimaktsii, Mir, M., 1980.

To content of the issue