Far Eastern Mathematical Journal

To content of the issue


Generalized condensers and boundary distortion theorems for conformal mappings


Dubinin V. N., Kim V.Yu.

2013, issue 2, Ñ. 196-208


Abstract
In this paper we prove some boundary distortion theorems for the univalent holomorphic functions in the unit disk by the potential theory. In particular, the discrete analogs of the classical statements on the behavior of the logarithmic capacity of the boundary sets under conformal

Keywords:
condensers, conformal capacity, meromorphic functions, univalent functions, boundary distortion, angular derivative

Download the article (PDF-file)

References

[1] K. Lowner, “Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises”, Math. Ann, 89 (1923), 103-121.
[2] H. Unkelbach, “Uber die Randverzerrung bei konformer Abbildung”, Math. Zeitschr, 43 (1938), 739-742.
[3] R. Osserman, “A Sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128 (2000), 3513-3517.
[4] Y. Komatu, “Uber eine Verscharfung des Lownerschen Hilfssatzes”, Proc. Imperial Acad. Japan., 18:7 (1942), 354-359.
[5] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.
[6] C. C. Cowen, Ch. Pommerenke, “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 2:26 (1982), 271-289.
[7] K. Y. Li, “Inequalities for fixed points of holomorphic functions", Bull. London Math. Soc., 22 (1990), 446-452.
[8] D. Bolotnikov, “On Cowen-Pommerenke inequalities”, Linear Multilinear Algebra, 60:2 (2012), 249-254.
[9] M. D. Contreras, S. Diaz-Madrigal, A. Vasil'ev, “Digons and angular derivatives of analytic self-maps of the unit disk”, Complex variables and elliptic equations, 52 (2007), 685-691.
[10] A.Iu. Solynin, “Moduli i ekstremal'no-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86.
[11] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin-New York, 2002.
[12] J. A. Jenkins, “Some theorems on boundary distortion”, Trans. Amer. Math. Soc., 81 (1956), 477-500.
[13] V. N. Dubinin, N. V. Eirikh, “Nekotorye primeneniia obobshchennykh kondensatorov v teorii analiticheskikh funktsii”, Zapiski nauchnykh seminarov POMI, 314 (2004), 52–75.
[14] V. N. Dubinin, V.Iu. Kim, “Teoremy iskazheniia dlia reguliarnykh i ogranichennykh v kruge funktsii”, Zapiski nauchnykh seminarov POMI, 350 (2007), 26–39.
[15] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiia v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dal'nauka, Vladivostok, 2009.
[16] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings", Math. Nachr., 283 (2010), 1589-1602.
[17] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul' kompleksnoi sfery”, Zapiski nauchnykh seminarov POMI, 254 (1998), 76–94.
[18] J. M. Anderson, A. Vasil'ev, “Lower Shwarz-Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33 (2008), 101-110.

To content of the issue