Far Eastern Mathematical Journal

To content of the issue


On invariant form of the mass conservation law


Gudimenko A. I., Guzev M.A.

2014, issue 1, P.


Abstract
The theory of fiber bundles is used for representation of the mass conservation law in a form that is invariant under general transformations of the four space-time coordinates. А generalized formulation of the law is proposed on the base of transition to covariant differentiation. Some physical interpretations of the generalized formulation are discussed.

Keywords:
conservation laws, Lie derivative, bundles, covariant derivative

Download the article (PDF-file)

References

[1] S.K. Godunov, E.I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniia, Nauchnaia kniga, Novosibirsk, 1998.
[2] S.P. Novikov, I.A. Taimanov, Sovremennye geometricheskie struktury i polia, MTsNMO, M, 2005.
[3] M.M. Postnikov, Lektsii po geometrii. Semestr IV. Differentsial'naia geometriia. Ucheb. posobie dlia vuzov, Nauka. Gl. red. fiz.-mat. lit., M, 1988.
[4] I. Kol?ar, P. Michor, J. Slov?ak, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[5] R. Darling, Differential Forms and Connections, Cambridge University Press, 1994.
[6] R. Palais, The geometrization of physics, National Tsing Hua University, Hsinchu, Taiwan, 1981.
[7] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989.
[8] C. Truesdell, R. Toupin, The classical field theories. In Encyclopedia of Physics edited by S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960.
[9] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin, 1983.
[10] V.L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka. Gl. red. fiz.-mat. lit., M, 1983.

To content of the issue