Far Eastern Mathematical Journal

To content of the issue


Spectral characteristics of the self-balanced stress fields


Guzev M. A.

2014, issue 1, Ń. 41-47


Abstract
We investigate a class of self-balanced stress fields which is parameterized by a stress function. The fuction is considered to be an element of the spectrum of the biharmonic operator. For different types of boundary conditions we constructed the spectral characteristics of the operator.

Keywords:
self-balanced stress fields, non-Euclidean continuum model, biharmonic equation

Download the article (PDF-file)

References

[1] K. S. Alan, S. D. Akbarov, “The Self-Balanced Shear Stresses in the Elastic Body with a Locally Curved Covered Fiber”, Advances in Mechanical Engineering, 2010 (2010), 1–14.
[2] I.P. Mazur, S. M. Bel’skii, “The St Venant Zone Extent of the Self-Balancing Longitudinal Elastic”, Materials Science Forum, 704–705 (2011), 33–39.
[3] A. Carpinteri, L. Montanari, A. Spagnoli, Fatigue Fractal Crack Propagating in a Self-Balanced Microstress Field, http://www.gruppofrattura.it/ocs/index.php/esis/CP2012/paper/view/9206.
[4] A. Perelmuter,V. I. Slivker, Numerical Structural Analysis: Methods, Models and Pitfalls, Springer-Verlag, Berlin Heidelberg, 2003, 501 s.
[5] S. D. Akbarov, A. N. Guz, Mechanics of Curved Composites, Kluwer Academic Publishers, 2001, 448 s.
[6] Zongjin Li, Advanced Concrete Technology, John Wiley & Sons, 2011, 624 s.
[7] G. H. Farrahi, G. Z. Voyiadjis, S. H. Hoseini, E. Hosseinian, “Residual Stress Analysis of the Autofrettaged Thick-Walled Tube Using Nonlinear Kinematic Hardening”, Journal of Pressure Vessel Technology, 135:2 (2013).
[8] S. Feli, M. E. A. Aaleagha, M. Foroutan, E. B. Farahani, “Finite Element Simulation of Welding Sequences Effect on Residual Stresses in Multipass Butt-Welded Stainless Steel Pipes”, Journal of Pressure Vessel Technology, 134:1 (2011).
[9] V.P. Myasnikov, M. A. Guzev, A. A. Ushakov, “Structure of self-balanced stresses in continuum”, FEMJ, 3:2 (2002), 231–241.
[10] M. A. Guzev, “Structure of Kinematic and Force Field in the Riemannian Continuum Model”, Journal of Applied Mechanics and Technical Physics, 52:5 (2011), 709–716.

To content of the issue