Far Eastern Mathematical Journal

To content of the issue


Optimal control in a nonstationary complex heat transfer problem


G. V. Grenkin

2014, issue 2, Ñ. 160–172


Abstract
The problem of optimal control of boundary properties for a nonstationary complex heat transfer problem is considered. The diffusion approximation of radiative transfer is used. The solvability of the optimal control problem is proved, necessary optimality conditions of the first order are obtained.

Keywords:
optimal control, conductive-convective-radiative heat transfer, diffusion approximation

Download the article (PDF-file)

References

[1] D. Clever, J. Lang, “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optimal Control Appl. Methods, 33:2 (2012), 157–175.
[2] M. Frank, A. Klar, R. Pinnau, “Optimal control of glass cooling using simplified $P_N$ theory”, Transport Theory Statist. Phys., 39:2–4 (2010), 282–311.
[3] R. Pinnau, G. Tho?mmes, “Optimal boundary control of glass cooling processes.”, Math. Methods Appl. Sci., 27:11 (2004), 1261–1281.
[4] R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modelled by the SP1-system”, Comm. Math. Sci., 5:4 (2007), 951–969.
[5] G. Thomes, R. Pinnau, M. Sea\"{i}d, T. Gotz, A. Klar, “Numerical methods and optimal control for glass cooling processes”, Trans. Theory Stat. Phys., 31:4–6 (2002), 513–529.
[6] O. Tse, R. Pinnau, N. Siedow, “Identification of temperature dependent parameters in a simplified radiative heat transfer”, Aust. J. Basic Appl. Sci., 5:1 (2011), 7–14.
[7] O. Tse, R. Pinnau, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707.
[8] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528.
[9] G. V. Grenkin, A. Yu. Chebotarev, “Nestacionarnaya zadacha slozhnogo teploobmena”, Zhurn. vychisl. matem. fiz., 54:11 (2014), 1806–1816.
[10] G. V. Grenkin, A. Yu. Chebotarev, “Ustojchivost' stacionarnyx reshenij diffuzionnoj modeli slozhnogo teploobmena”, Dal'nevost. matem. zhurn., 14:1 (2014), 18–32.
[11] A. E. Kovtanyuk, A. Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219:17 (2013), 9536–9362.
[12] A. E. Kovtanyuk, A. Yu. Chebotarev, “Stacionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:4 (2014), 191–199.
[13] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815.
[14] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784.
[15] M. F. Modest, Radiative Heat Transfer, Academic Press, 2003.
[16] D. A. Boas, Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications, A Ph.D. Dissertation in Physics, University of Pennsylvania, 1996.
[17] Zh.-L. Lions, Optimal'noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M, 1972.

To content of the issue