Far Eastern Mathematical Journal

To content of the issue

Geometrical aspects of the mass conservation law

A. I. Gudimenko, M. A. Guzev

2014, issue 2, Ñ. 173–190

The theory of fiber bundles is used for representation of the mass conservation law in a coordinate-free form. À generalized formulation of the law is proposed and its physical interpretations are discussed.

conservation laws, Lie derivative, bundles, covariant derivative

Download the article (PDF-file)


[1] F. Klejn, Lekcii o razvitii matematiki v XIX stoletii, ONTI, M.–L., 1998.
[2] A. Puankare, O nauke, Nauka, M., 1990.
[3] L. I. Sedov, “Matematicheskie metody postroeniya novyx modelej sploshnyx sred”, UMN, 20:5(125) (1965), 121–180.
[4] G. Romano, R. Barretta, M. Diaco, “Geometric continuum mechanics”, Meccanica, 49:1 (2014), 111–133.
[5] S. K. Godunov, E. I. Romenskij, E'lementy mexaniki sploshnyx sred i zakony soxraneniya, Nauchnaya kniga, Novosibirsk, 1998.
[6] L. I. Sedov, Mexanika sploshnoj sredy, T. 1, Nauka, M., 1994.
[7] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989.
[8] J. Ehlers, “The Nature and Structure of Space-Time”, The Physicist?s Conception of Nature, ed. J. Mehra, Raidel, Dordrecht, 1973, 71–91.
[9] E. Cartan, “Sur les varietes a connexion affine et la theorie de la relativite generalisee (premiere partie)”, Ann E?cole Norm Sup., 40 (1923), 325–412.
[10] E. Cartan, “Sur les varietes a connexion affine et la theorie de la relativite generalisee (suite)”, Ann E?cole Norm Sup., 41 (1924), 1–25.
[11] A. Bernal, M. Sanchez, “Leibnizian, Galilean and Newtonian structures of space-time”, J. Math. Phys., 44 (2003), 77–108.
[12] A. Trautman, “Foundations and current problems of general relativity”, Lectures on General Relativity. Volume 1 of Brandeis Summer Institute in Theoretical Physics, ed. S. Deser and K. Ford, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965, 1–248.
[13] A. Trautman, “Fibre Bundles Associated with Space-Time”, Reports in Mathematical Physics, 1 (1970), 29–62.
[14] A. Trautman, “A classification of space-time structures”, Reports in Mathematical Physics, 10 (1976), 297–310.
[15] G. Giachetta, L. Mangiarotti and G. Sardanashvily, Geometric formulation of classical and quantum mechanics, World Scientific, Singapore, 2011.
[16] S. P. Novikov, I. A. Tajmanov, Sovremennye geometricheskie struktury i polya, MCNMO, M., 2005.
[17] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin, 1983.
[18] A. Jadczyk, M. Modugno, Galilei general relativistic quantum mechanics, Report of Department of Applied Mathematics, University of Florence, 1994, http://www.dma.unifi.it/~modugno/.
[19] W. Noll, “On the continuity of the solid and fluid states”, J. Rational Mech.Anal., 4 (1955), 3–81.
[20] C. Truesdell, R. Toupin, “The classical field theories”, Encyclopedia of Physics, ed. S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960.
[21] J. Koszull, Lectures on fibre bundles and differential geometry, Notes by S. Ramanan, Tata Institute of Fundamental Research, Bombay, 1960.
[22] G. Giachetta, L. Mangiarotti and G. Sardanashvily, Advanced Classical Field Theory, World Scientific, Singapore, 2009.
[23] I. Kolar, P. Michor, J. Slovak, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[24] B. Schutz, Geometrical methods of mathematical physics, Cambridge Univ. Press, Cambridge, 1980.
[25] L. D. Landau, E. M. Lifshic, Teoreticheskaya fizika. T. VI. Gidrodinamika, Fizmatlit, M., 2001.

To content of the issue