Far Eastern Mathematical Journal

To content of the issue


Stochastic First Integrals, Kernel Functions for Integral Invariants and the Kolmogorov equations


V. A. Dubko, E. V. Karachanskaya

2014, issue 2, Ñ. 200–216


Abstract
In this article the authors present stochastic first integrals (SFI), the generalized Ito-Wentzell formula and its application for obtaining the equations for SFI, for kernel functions for integral invariants and the Kolmogorov equations which described by the generalized Ito equations.

Keywords:
Stochastic first integrals, Stochastic kernel function, Stochastic integral invariant, the Ito? equation with Poisson measure, the Generalized Ito-Wentzell formula, Kolmogorov's equations

Download the article (PDF-file)

References

[1] V. A. Dubko, Pervyj integral sistemy stoxasticheskix differencial'nyx uravnenij, preprint, In-t matematiki AN USSR, Kiev, 1978.
[2] N. V. Krylov, B. L. Rozovskij, “Stoxasticheskie differencial'nye uravneniya v chastnyx proizvodnyx i diffuzionnye processy”, Uspexi mat. nauk, 37:6 (1982), 75–95.
[3] V. A. Dubko, “Otkrytye e'volyucioniruyushhie sistemy.”, Persha mizhnarodna naukovo-praktichna konferenciya “Vidkriti evolyucionuyuchi sistemi” (26–27 kvit. 2002 r., Kiiv (Dodatok)), VNZ VMURoL, Kii?, 2002, 14–31.
[4] V. A. Dubko, Voprosy teorii i primeneniya stoxasticheskix differencial'nyx uravnenij, DVNC AN SSSR, Vladivostok, 1989.
[5] V. A. Dubko, “Otkrtytye dinamicheskie sistemy”, V poiskax skrytogo poryadka, Dal'nauka, Vladivostok, 1995, 94–116.
[6] V. A. Dubko, “Integral'ni invarianti dlya odnogo klasu sistem stoxastichnix diferencial'nix rivnyan'”, Dokl. AN USSR, A:1 (1984), 18–21.
[7] V. A. Dubko, “Integral'nye invarianty, pervye integraly i prityagivayushhie mnogoobraziya stoxasticheskix differencial'nyx uravnenij dlya odnogo klassa stoxasticheskix differencial'nyx uravnenij”, Cb. nauch. tr. NAN Ukrainy, In-t matematiki NAN Ukrainy, Kiev, 1998, 87–90.
[8] V. A. Dubko, “Integral'nye invarianty uravnenij Ito i ix svyaz' s nekotorymi zadachami teorii sluchajnyx processov”, Dokl. NAN Ukrainy, 2002, ¹ 1, 24–29.
[9] E. Karachanskaya(Chalykh), “Dynamics of random chains of finite size with an infinite number of elements in ${\mathbb R}^{2}$”, Theory of Stochastic Processes, 16 (32):2 (2010), 58–68.
[10] V. A. Dubko, E. V. Chalyx, Brounovskoe dvizhenie s determinirovannym modulem skorosti, Preprint, In-t mat. NAN Ukrainy, Kiev, 1997.
[11] E. V. Chalyx, “Obobshhenie modelej brounovskogo dvizheniya so sluchajnymi ortogonal'nymi vozdejstviyami”, Druga mizhnarodna naukovo-praktichna konferenciya «Vidkriti evolyucionuyuchi sistemi» (1–30 grudnya 2003 r.), VNZ VMURoL, Kiev, 2003, 90–93.
[12] V. A. Dubko, E. V. Chalyx, “Postroenie analiticheskogo resheniya dlya odnogo klassa uravnenij tipa Lanzhevena s ortogonal'nymi sluchajnymi vozdejstviyami”, Ukr. mat. zhurn., 50:4 (1998), 666–668.
[13] E. V. Karachanskaya, V. A. Dubko, Primenenie xarakteristicheskix funkcij v teorii veroyatnostej i teorii sluchajnyx processov, uchebnoe posobie, Izd-vo Tixookean. gos. un-ta, Xabarovsk, 2010.
[14] E. V. Karachanskaya, “Momentnye xarakteristiki i dinamika polozheniya diffundiruyushhej na sfere tochki pod dejstviem puassonovskix skachkov”, Vestnik Tixookeanskogo gosuniversiteta, 2012, ¹ 1(24), 69–72.
[15] E. V. Karachanskaya, “Ob odnom obobshhenii formuly Ito – Ventcelya”, Obozrenie prikladnoj i promyshlennoj matematiki, 18:2 (2011), 494–496.
[16] V. A. Dubko, E. V. Karachanskaya, O dvux podxodax k postroeniyu obobshhennoj formuly Ito – Ventcelya, preprint ¹174, Izd-vo Tixookean. gos. un-ta, Xabarovsk, 2012.
[17] E. V. Karachanskaya, “Obobshhennaya formula Ito – Ventcelya dlya sluchaya necentrirovannoj puassonovskoj mery, stoxasticheskij pervyj integral i pervyj integral”, Matematicheskie trudy, 17:1 (2014), 299–122.
[18] E. V. Chalyx, “Programmnoe upravlenie s veroyatnost'yu 1 dlya otkrytyx sistem”, Obozrenie prikladnoj i promyshlennoj matematiki, 14:2 (2007), 253–254.
[19] E. V. Chalyx, “Postroenie mnozhestva programmnyx upravlenij s veroyatnost'yu 1 dlya odnogo klassa stoxasticheskix sistem”, Avtomatika i telemexanika, 70:8 (2009), 110–122.
[20] E. V. Karachanskaya, “Postroenie programmnyx upravlenij s veroyatnost'yu 1 dlya dinamicheskoj sistemy s puassonovskimi vozmushheniyami”, Vestnik Tixookeanskogo gosudarstvennogo universiteta, 2011, ¹ 2 (21), 51–60.
[21] A. D. Ventcel', “Ob uravneniyax teorii uslovnyx markovskix processov”, Teoriya veroyatnostej i ee? primenenie, X:2 (1965), 390–393.
[22] V. A. Dubko, E. V. Karachanskaya, Special'nye razdely teorii stoxasticheskix differenci al'nyx uravnenij, ucheb. posobie, Izd-vo Tixookean. gos. un-ta, Xabarovsk, 2013.
[23] I. I. Gixman, A. V. Skoroxod, Stoxasticheskie differencial'nye uravneniya, Nauk. dumka, Kiev, 1968.
[24] B. \Oksendal and T. Zhang, “The Ito-Ventcel formula and forward stochastic differential equation driven by Poisson random measures”, Osaka J. Math., 44 (2007), 207–230.
[25] B. \Oksendal and A. Sulem and T. Zhang, “A stochastic HJB equation for optimal control of forward-backward SDEs”, http://arxiv.org/abs/1312.1472v1.
[26] V. A. Dubko, Stoxasticheskie differencial'nye uravneniya v nekotoryx zadachax matematicheskoj fiziki, Dissertaciya na soiskanie uch. stepeni kand. fiz.-mat. nauk; Institut matematiki AN USSR, Kiev, 1979.
[27] V. I. Zubov, Dinamika upravlyaemyx sistem, Uchebnoe posobie dlya vuzov, Vysshaya shkola, M., 1982.

To content of the issue