Far Eastern Mathematical Journal

To content of the issue


Statistical modeling of the electron transport in visualization problems of inhomogeneous media


A. S. Zhuplev, I. V. Prokhorov, I. P. Yarovenko

2014, issue 2, Ñ. 217–230


Abstract
The work is devoted to the problems of mathematical modeling electron transport in matter. We propose new weighted Monte Carlo method for solving the electron transfer equation. The numerical experiments with application to the problems of electronic single-beam probing inhomogeneous media are carried out. The influence of multiple scattered electrons on the image quality is experimentally studied.

Keywords:
transfer equation of electrons, scattering cross-section, boundary-value problems, Monte-Carlo methods

Download the article (PDF-file)

References

[1] D. M. Sindo, T. Oikava, Analiticheskaya e'lektronnaya prosvechivayushhaya mikoroskpiya, Texnosfera, M., 2006.
[2] E. J. Kirkland, Advanced Computing in Electron Microscopy, Springer, New York Dordrecht Heidelberg, 2010.
[3] N. F. Mott, “The Scattering of Fast Electrons by Atomic Nuclei”, Proc. Roy. Soc. (London), A124 (1929), 425-442.
[4] V. A. Kuzyuk, A. X. Raxmatulina, “Nekotorye asimptoticheskie zadachi teorii perenosa e'lektronov”, Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki, 15:5 (1975), 1248–1261.
[5] M. E. Zhukovskij, S. V. Podolyako, R. V. Uskov, “Model' individual'nyx soudarenij dlya opisaniya perenosa e'lektronov v veshhestve”, Matematicheskoe modelirovanie, 23:6 (2011), 147-160.
[6] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoj teorii perenosa chastic”, Tr. MIAN SSSR, 61 (1961), 3–158.
[7] T. A. Germogenova, Lokal'nye svojstva reshenij uravneniya perenosa, Nauka, M., 1986.
[8] D. S. Anikonov, A. E. Kovtanyuk, I. V. Proxorov, Ispol'zovanie uravneniya perenosa v tomografii, Logos, M., 2000.
[9] E. G. Shejkin, “Model'noe differencial'noe sechenie uprugogo rasseyaniya e'lektronov na atomax dlya modelirovaniya proxozhdeniya e'lektronov v veshhestve metodom Monte-Karlo”, Zhurnal texnicheskoj fiziki, 80:1 (2010), 3-11.
[10] A. G. Maslovskaya, A. V. Sivunov, “Komp'yuternoe modelirovanie metodom monte-karlo e'lektronnyx traektorij v polyarnyx die'lektrikax pri vozdejstvii e'lektronnymi puchkami srednix e'nergij”, Vestnik Saratovskogo gosudarstvennogo texnicheskogo universiteta, 2:1 (2012), 53-58.
[11] G. I. Marchuk, G. A. Mixajlov, M. A. Nazaraliev i dr., Metod Monte-Karlo v atmosfernoj optike, Nauka, Novosibirsk, 1976.
[12] S. M. Ermakov, Metod Monte-Karlo v vychislitel'noj matematike, Binom. Laboratoriya znanij, Sankt-Peterburg, 2009.
[13] I. V. Proxorov, A. S. Zhuplev, “Ob e'ffektivnosti metodov maksimal'nogo secheniya v teorii perenosa izlucheniya”, Komp'yuternye issledovaniya i modelirovanie, 5:4 (2013), 573-582.
[14] A. S. Zhuplev, I. V. Proxorov, “Raschet koe'fficientov oslableniya e'lektronnogo izlucheniya v zadannom diapazone e'nergij”, Svidetel'stvo o gosudarstvennoj registracii programm dlya E'VM 2014612192. Zaregistrirovano v Reestre programm dlya E'VM, 20.02.2014.
[15] A. S. Zhuplev, V. G. Nazarov, I. V. Proxorov, E. V. Pustovalov, “Baza dannyx par ximicheskix e'lementov, nerazlichimyx na nekotorom urovne e'nergii pri e'lektronnom prosvechivanii”, Svidetel'stvo o gosudarstvennoj registracii bazy dannyx E'VM 2014620106. Zaregistrirovano v Reestre baz dannyx, 15.01.2014.
[16] I. M Sobol', Chislennye metody Monte-Karlo, M., Nauka, 1973.
[17] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Algorithm of finding a body projection within an absorbing and scattering medium”, Inverse and III-Posed Problems, 18:8 (2011), 885-893.
[18] D. S. Anikonov, V. G. Nazarov, I. V. Proxorov, “Zadacha odnorakursnogo zondirovaniya neizvestnoj sredy”, Sibirskij zhurnal industrial'noj matematiki, 14:2 (2011), 21-27.
[19] D. S. Anikonov, V. G. Nazarov, I. V. Proxorov, “Integrodifferencial'nyj indikator dlya zadachi odnorakursnoj tomografii”, Sib. zhurn. industr. Matem., 17:2 (2014), 3–10.

To content of the issue