Far Eastern Mathematical Journal

To content of the issue


On ring $Q$-mappings with respect to non-conformal modulus


R. R. Salimov

2014, issue 2, Ñ. 257–269


Abstract
The paper is devoted to the development of the theory of open discrete ring $Q$-mappings with respect to $p$-modulus in ${\Bbb R}^n$, $n \ge 2$. For such mappings, it is established a distance distortion estimate of the logarithmic type. It is also established a measure estimate for the ball image. Finally, it is investigated the asymptotic behavior for homeomorphic mappings.

Keywords:
$p$-modulus, $p$-capacity, $Q$-mappings, $Q$-homeomorphisms

Download the article (PDF-file)

References

[1] F.W. Gehring, “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances in the theory of Riemann surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. of Math. Studies., 66, 1971, 175–193.
[2] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Mathematies, Springer, New York, 2009.
[3] R.R. Salimov, “Absolyutnaya nepreryvnost' na liniyax i differenciruemost' odnogo obobshheniya kvazikonformnyx otobrazhenij”, Izv. RAN. Ser. matem., 72:5 (2008), 141–-148.
[4] A. Golberg, “Differential properties of $(\alpha,Q)$-homeomorphisms”, Further Progress in Analysis, World Scientific Publ., 2009, 218–228.
[5] A. Golberg, “Integrally quasiconformal mappings in space”, Zbirnik prac' ²n-tu matematiki NAN Ukrai?ni, 7:2 (2010), 53–64.
[6] C.J. Bishop, V.Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Intern. Journ. Math. and Math. Scie., 22 (2003), 1397–1420.
[7] Yu.F. Strugov, “Kompaktnost' klassov otobrazhenij, kvazikonformnyx v srednem”, DAN SSSR, 243:4 (1978), 859–861.
[8] R.R. Salimov, E.A. Sevost'yanov, “Teoriya kol'cevyx $Q$–otobrazhenij v geometricheskoj teorii funkcij”, Matem. sbornik, 201:6 (2010), 131–-158.
[9] R.R. Salimov, E.A. Sevost'yanov, “O vnutrennix dilataciyax $Q$–otobrazhenij s neogranichennoj xarakteristikoj”, Ukr. matem. vestnik, 8:1 (2011), 129–143.
[10] R.R. Salimov, “On finitely Lipschitz space mappings”, Sib. e'lektron. matem. izv., 8 (2011), 284–295.
[11] R.R. Salimov, “Ob ocenke mery obraza shara”, Sib. matem. zhurn., 53:4 (2012), 920–-930.
[12] R.R. Salimov, “O lipshicevosti odnogo klassa otobrazhenij”, Matem. zametki, 94:4 (2013), 591–599.
[13] V.I. Kruglikov, “Yomkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Matem. sbornik., 130:2 (1986), 185–206.
[14] S.K. Vodop'yanov, A.D. Uxlov, “Operatory superpozicii v prostranstvax Soboleva”, Izv. vuzov. Matem., 2002, ¹ 10, 11–-33.
[15] S.K. Vodop'yanov, A.D. Uxlov, “Operatory superpozicii v prostranstvax Lebega i differenciruemost' kvaziadditivnyx funkcij mnozhestva”, Vladikavk. matem. zhurn., 4:1 (2002), 11–-33.
[16] S.K. Vodop'yanov, “Description of composition operators of Sobolev spaces”, Doklady Mathematics, 71:1 (2005), 5–-9.
[17] S.K. Vodopyanov, “Composition operators on Sobolev spaces”, Complex Analysis and Dynamical Systems II, Contemporary Mathematics Series,, 382, 2005, 401–-415.
[18] D.A. Kovtonyuk, V.I. Ryazanov, R.R. Salimov, E.A. Sevost’yanov, “On mappings in the Orlicz-Sobolev classes”, Ann. Univ. Bucharest, Ser. Math, 3:1 (2012), 67–-78.
[19] D.A. Kovtonyuk, V.I. Ryazanov, R.R. Salimov, E.A. Sevost'yanov, “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102.
[20] D.A. Kovtonyuk, V.I. Ryazanov, R.R. Salimov, E.A. Sevost'yanov, “Granichnoe povedenie klassov Orlicha–Soboleva”, Matem. zametki, 95:4 (2014), 564–576.
[21] E.S. Afanas'eva, V.I. Ryazanov, R.R. Salimov, “Ob otobrazheniyax v klassax Orlicha–Soboleva na rimanovyx mnogoobraziyax”, Ukr. mat. vestnik, 8:3 (2011), 319–-342.
[22] T. Lomako, R. Salimov, E. Sevost'yanov, “On equicontinuity of solutions to the Beltrami equations”, Ann. Univ. Bucharest, Math. Ser, LIX:2 (2010), 263–274.
[23] D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov, R.R. Salimov, “Granichnoe povedenie i zadacha Dirixle dlya uravnenij Bel'trami”, Algebra i analiz, 25:4 (2013), 101–-124.
[24] S. Saks, Teoriya integrala, IL, M., 1949.
[25] J. Vaisala, Conformal Geometry and Quasiregular mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971.
[26] S. Rickman, Quasiregular mappings, Results in Mathematic and Related Areas (3), 26, Springer-Verlag, Berlin, 1993.
[27] O. Martio, S. Rickman and J. Vaisala, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 448 (1969), 1–40.
[28] V.M. Gol'dshtejn, Yu.G. Reshetnyak, Vvedenie v teoriyu funkcij s obobshhennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983.
[29] V.G. Maz'ya, “Klassy oblastej, mer i emkostej v teorii prostranstv differenciruemyx funkcij”, Analiz – 3, Itogi nauki i texn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 26, VINITI, M., 1988, 159–-228.
[30] G.T. Whyburn, Analytic topology, American Mathematical Society, Rhode Island, 1942.

To content of the issue