Far Eastern Mathematical Journal

To content of the issue


Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value


N. Budarina, V. Bernik, F. G?otze

2015, issue 1, . 21-37


Abstract
In this paper we obtain the effective estimates in the terms of n and Q for the measure of the sets of real numbers with the given approximation property by algebraic numbers of degree n and height bounded by $Q\in\mathbb N$.

Keywords:
integer polynomials, Lebesgue measure, approximation by algebraic numbers

Download the article (PDF-file)

References

[1] A. J. Khintchine, "Zwei Bemerkungen zu einer Arbeit des Herrn Perron", Math. Z., 22:1 (1925), 274-284.
[2] V. V. Beresnevich, "On approximation of real numbers by real algebraic numbers", Acta Arith., 90:2 (1999), 97-112.
[3] V. I. Bernik, "On the exact order of approximation of zero by values of integral polynomials", Acta Arith., 53 (1989), 17-28.
[4] A. J. Khintchine, "Zur metrischen Theorie der diophantischen Approximationen", Math. Z., 24:1 (1926), 706-714.[5] K. Mahler, "Uber das Mass der Menge aller S-Zahlen", Math. Ann., 106 (1932), 131-139.
[6] V. G. Sprindzuk, Mahler's problem in metric Number Theory, Nauka i Tehnika, Minsk, 1967.
[7] V. V. Beresnevich, "A Groshev type theorem for convergence on manifolds", Acta Math. Hungar., 94:1-2 (2002), 99-130.
[8] V. I. Bernik, D. Kleinbock, G. A. Margulis, "Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions", Internat. Math. Res. Notices, 2001, 9, 453-486.
[9] V. I. Bernik, N. Budarina, D. Dickinson, "A divergent Khintchine theorem in the real, complex, and p-adic elds", Lith. Math. J., 48:2 (2008), 158-173.
[10] V. I. Bernik, N. Budarina, D. Dickinson, "Simultaneous Diophantine approximation in the real, complex and p-adic elds", Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193-216.
[11] Y. Bugeaud, "Approximation by algebraic integers and Hausdorff dimension", J. Lond. Math. Soc., 65 (2002), 547-559.
[12] V. V. Beresnevich, V. I. Bernik, F. Goetze, "The distribution of close conjugate algebraic numbers", Compositio Math., 146 (2010), 1165-1179.
[13] N. Budarina, D. Dickinson, "Simultaneous Diophantine Approximation in two metrics and the distance between conjugate algebraic numbers in C Qp", Indagationes Mathematicae, 23 (2012), 32-41.
[14] N. Budarina, D. Dickinson, Jin Yuan, "On the number of polynomials with small discriminants in the euclidean and p-adic metrics", Acta Mathematica Sinica, 28:3 (2012), 469-476.
[15] N. Budarina, F. Goetze, "Distance between conjugate algebraic numbers in clusters", Mathematical Notes, 94:5 (2013), 816-819.
[16] V. V. Beresnevich, V. I. Bernik, F. Goetze, "Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants", Dokl. Nats. Akad.Nauk Belarusi, 54:2 (2010), 26-28.
[17] V. V. Beresnevich, V. I. Bernik, F. Goetze, "On the distribution of the values of theresultants of integral polynomials", Dokl. Nats. Akad. Nauk Belarusi, 54:5 (2010), 21-23.
[18] G. V. Chudnovsky, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984.
[19] P. L. Cijsouw, Transcendental numbers, North-Holland, Amsterdam, 1972.
[20] V. I. Bernik, "The metric theorem on the simultaneous approximation of zero by values of integral polynomials", Izv. Akad. Nauk SSSR, Ser. Mat., 44 (1980), 24-45.
[21] V. I. Bernik, "Application of the Hausdorff dimension in the theory of Diophantine approximations", Acta Arith., 42:3 (1983), 219-253.
[22] A. O. Gelfond, Transcendental and algebraic numbers, Gosudartsv. Izdat. Tehn.-Teor. Lit., Moscow, 1952.

To content of the issue