Far Eastern Mathematical Journal

To content of the issue


On the subgroups of birational contact maps and the Kartan-Keller's conjecture


Bibikov P.V.

2018, issue 1, Ñ. 9-17


Abstract
In the present paper the new approach to description of contact birational maps of 1-jet space is suggested. This approach is based on the notion of symplectization of the 1-jet space.

Keywords:
contact maps, birational maps, Cremona group, jet space, point transformations

Download the article (PDF-file)

References

[1] B. Kriglikov, V. Lychagin, “ Global Lie-Tresse theorem”, Selecta Mathematica, New Series, 22:3, (2016), 1357–1411.
[2] P. Bibikov, V. Lychagin, “GL2 (C)-orbits of binary rational forms”, Lobachevskii Journal of Mathematics, 32:1, (2011), 95–102.
[3] P.V. Bibikov, V.V. Lychagin, “GL3 (C)-orbity racional'nyh ternarnyh form”, DAN, 438:4, (2011), 295–297.
[4] P. Bibikov, V. Lychagin, “Klassifikacija linejnyh dejstvij algebraicheskih grupp na prostranstvah odnorodnyh form”, DAN, 442:6, (2012), 732–735.
[5] P. Bibikov, V. Lychagin, “On differential invariants of actions of semisimple Lie groups”, J. Geometry and Physics, 2014, No 85, 99–105.
[6] P. Bibikov, V. Lychagin, “Differential Contra Algebraic Invariants: Applications to Classical Algebraic Problems”, Lobachevskii Journal of Mathematics, 37:1, (2016), 36–49.
[7] P. Bibikov, “Zadacha Li i differencial'nye invarianty ODU vida y''=F(x, y)”, Funkcional'nyj analiz i ego prilozhenija, 51:4, (2017).
[8] P. Bibikov, “Generalized Lie Problem and Differential Invariants for the Third Order ODEs”, Lobachevskii Journal of Mathematics, 38:4, (2017), 622–629.
[9] P. Bibikov, A. Malakhov, “On Lie problem and differential invariants for the subgroup of the plane Cremona group”, Journal of Geometry and Physics, 2017, ¹121, 72–82.
[10] E. Ferapontov, M. Pavlov, R. Vitolo, “Towards the Classification of Homogeneous Third-Order Hamiltonian Operators”, International Mathematics Research Notices, 2016:22, (2016), 6829-6855.
[11] Yu. Galitski, D. Timashev, “On classification of metabelian Lie algebras”, Journal of Lie Theory, 9:1, (1999), 125–156.
[12] D. Alekseevskij, A. Vinogradov, V. Lychagin, “Osnovnye idei i ponjatija differencial'noj geometrii”, Geometrija – 1, Itogi nauki i tehn. Ser. Sovrem. probl. mat. Fundam. napravlenija, 28, VINITI, M., 1988, 5–289.
[13] P. Bibikov, “Differential Invariants and Contact Classification of Ordinary Differential Equations”, Lobachevskii Journal of Mathematics, 36:3, (2015), 245–249.
[14] F. Klein, Vorlesungen uber hohere Geometrie, Springer, Berlin, 1926.
[15] O. Keller, “Zur Theorie der ebenen Beruhrungstransformationen I”, Math. Ann., 120, (1947), 650–675.
[16] M. Gizatullin, “Klein’s conjecture for contact automorphisms of the three-dimensional affine space”, Michigan Math. J., 2008, No 58, 89–98.
[17] V. Iskovskih, “Obrazujuwie v dvumernoj gruppe Kremony nad nezamknutym polem”, Teorija chisel, algebra, matematicheskij analiz i ih prilozhenija, Sb. st. Posvjawaetsja 100-letiju so dnja rozhdenija Ivana Matveevicha Vinogradova, Tr. MIAN, 200, Nauka, M., 1991, 157–170.
[18] V. Arnol'd, Matematicheskie metody v klassicheskoj mehanike, Nauka, M., 1989.
[19] V. Popov, “Algebraic groups and the Cremona group”, Oberwolfach Reports, 10:2, (2013), 1053–1055.
[20] P. Bibikov, “On symplectization of 1-jet space and differential invariants of point pseu- dogroup”, J. Geometry and Physics, 2014, No 85, 81–87.

To content of the issue