Far Eastern Mathematical Journal

To content of the issue


The exact formula for the temperature of a one-dimensional crystal


Guzev M.A.

2018, issue 1, Đ. 39-47


Abstract
An analytical representation is obtained for the temperature in a one-dimensional harmonic crystal. It is shown that for a large number of particles, the leading contribution to the temperature distribution does not depend on the particle number.

Keywords:
one-dimensional harmonic crystal, molecular dynamics, temperature

Download the article (PDF-file)

References

[1] M.P. Allen, A.K. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
[2] A.M. Krivcov, ôKolebanija jenergij v odnomernom kristalleö, Doklady Akademii nauk, 458:3, (2014), 279ľ281.
[3] M.A. Guzev, A.A. Dmitriev, ôOscilljacionno-zatuhajuwee povedenie temperatury v kristalleö, Dal'nevost. matem. zhurn., 17:2, (2017), 170ľ179.
[4] Dzh.V. Gibbs, Termodinamika. Statisticheskaja mehanika, Nauka, Moskva, 1982.
[5] G.N. Vatson, Teorija beselevyh funkcij. CHast' pervaja, Izdatel'stvo inostrannoj literatury, Moskva, 1949.
[6] A.P. Prudnikov, JU.A. Brychkov, O.I. Marichev, Integraly i rjady. JElementarnye funkcii, v 3 t., t. 1, Fizmatlit, Moskva, 2002.
[7] A.P. Prudnikov, JU.A. Brychkov, O.I. Marichev, Integraly i rjady. Special'nye funkcii, v 3 t., t. 2, Fizmatlit, Moskva, 2003.
[8] M.V. Fedorjuk, Asimptotika: integraly i rjady (SMB), Nauka GRFML, Moskva, 1987.

To content of the issue