Far Eastern Mathematical Journal

To content of the issue


Boundary inverse problem for conductive-radiative equations of heat transfer


Mesenev P.R., Chebotarev A.Yu.

2018, issue 1, P. 75-84


Abstract
The boundary inverse problem of finding the reflecting properties of the boundary region for stationary radiation-conductive heat transfer equations in the three-dimensional region is considered. The existence of a quasi-solution of the inverse problem is proved and an optimality system is obtained. An algorithm for solving a problem is presented, the effectiveness of which is illustrated by numerical examples.

Keywords:
radiative heat transfer equations, quasi-solution of the inverse problem, gradient descent method

Download the article (PDF-file)

References

[1] M.F. Modest, Radiative Heat Transfer, Academic Press, 2003.
[2] Clever D. and Lang J., “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optim. Control Appl. Meth., 33:2, (2012), 157–175.
[3] O. Tse, R. Pinnau, N. Siedow, “Identification of temperature dependent parameters in laser–interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9, (2012), 1–29.
[4] N. Siedow O. Tse, R. Pinnau., “Identification of temperature dependent parameters in a simplified radiative heat transfer”, Aust. J. Basic Appl. Sci., 2011, 7–14.
[5] R. Pinnau O. Tse, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 2013, 679–707.
[6] G. Thomes, R. Pinnau, M. Seaid, T. Gotz, and A. Klar., Trans. Theory Stat Phys., 31:4–6, (2002), 513–529.
[7] Alexander Yu. Chebotarev, Andrey E. Kovtanyuk, Gleb V. Grenkin, Nikolai D. Botkin, and Karl Heinz Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289:10, (2016), 371–380.
[8] A. Chebotarev, A. Kovtanyuk, G. Grenkin, N. Botkin, and K.-H. Hoffman“Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2, (2016), 1243–1260.
[9] K. Glashoff and E. Sachs, “On theoretical and numerical aspects of the bang-bang- principle”, Numer. Math., 29:1, (1977), 93–113.
[10] Kovtanyuk Andrey E., Chebotarev Alexander Yu., Botkin Nikolai D., and Hoffmann Karl-Heinz, “Theoretical analysis of an optimal control problem of conductive convective radiative heat transfer”, J. Math. Anal. Appl., 412, (2014), 520–528.
[11] G.V. Grenkin, “Optimal'noe upravlenie v nestacionarnoj modeli slozhnogo teploobmena”, Dal'nevost. matem. zhurn., 14:2, (2014), 160-172.
[12] R.V. Brizickij, ZH.JU. Sarickaja, “Ustojchivost' reshenij jekstremal'nyh zadach dlja nelinejnogo uravnenija konvekcii–diffuzii–reakcii pri uslovii Dirihle”, ZH. vychisl. matem. i matem. fiz., 56:12, (2016), 2042–2053.
[13] G.V. Alekseev, R.V. Brizickij, ZH.JU. Sarickaja, “Ocenki ustojchivosti reshenij jekstremal'nyh zadach dlja nelinejnogo uravnenija konvekcii-diffuzii-reakcii”, Sib. zhurn. industr. matem., 19:2, (2016), 3–16.
[14] R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modeled by the sp1-system”, Comm. Math. Sci., 5:4, (2007), 951–969.
[15] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, and Karl-Heinz Hoffman, “Unique solvability of a steady-state complex heat transfer model,”, Commun. Nonlinear Sci. Numer. Simulat., 20, (2015), 776–784.
[16] A.D. Ioffe and V.M. Tikhomirov, Theory of extremal problems, North Holland, Amsterdam, 1979.

To content of the issue