Far Eastern Mathematical Journal

To content of the issue


Determination of a diffuse reflecting surface under pulsed irradiation


Kan V.A., Prokhorov I.V.

2018, issue 2, Ñ. 206-215


Abstract
An inverse problem of determining a diffusely reflecting surface under given functionals of the radiation flux density for a nonstationary radiation transfer equation is considered. Assuming the point pulsed source and the single scattering approximation, authors obtained the nonlinear differential equation. The solution has been obtained in a few quadratures to determine the profile of the Lambert surface. The computational experiments were carried out on test examples.

Keywords:
radiation transfer equation, diffuse reflection, Lambert's cosine law, inverse problem

Download the article (PDF-file)

References

[1] V.R. Kireytov, Obratnyye zadachi fotometrii, VTS SO AN SSSR, Novosibirsk, 1983.
[2] R.D. Urik, Osnovy gidroakustiki, Sudostroyeniye, L., 1978.
[3] A.V. Bogorodskiy, G.V. YAkovlev, E.A. Korepin, A.K. Dolzhikov, Gidroakusticheskaya tekhnika issledovaniya i osvoyeniya okeana, Gidrometeoizdat, L., 1984.
[4] D.S. Anikonov, A.E. Kovtanyuk, I.V. Prokhorov, Ispol’zovaniye uravneniya perenosa v tomografii, Logos, M., 2000.
[5] Yu. E. Anikonov, Inverse Problems for Kinetic and Other Evolution Equations, VSP, Utrecht, 2001.
[6] V.V. Tuchin, Optika biologicheskikh tkaney. Metody rasseyaniya sveta v meditsinskoy diagnostike, Fizmatlit, M., 2013.
[7] I.V. Prokhorov, V.V. Zolotarev, I.B. Agafonov, “Zadacha akusticheskogo zondirovaniya vo fluktuiruyushchem okeane”, Dal’nevostochnyy matematicheskiy zhurnal, 11:1, (2011), 76–87.
[8] I.V. Prokhorov, A.A. Sushchenko, “Issledovaniye zadachi akusticheskogo zondirovaniya morskogo dna metodami teorii perenosa izlucheniya”, Akusticheskiy zhurnal, 61:3, (2015), 400–408.
[9] I.V. Prokhorov, A.A. Sushchenko, V.A. Kan, “Ob odnoy zadache opredeleniya rel’yefa dna fluktuiruyushchego okeana”, Sib. zhurn. industr. matem., 18:2, (2015), 99–110.
[10] V.A. Kan, I.V. Prokhorov, A.A. Sushchenko, “Determining the bottom surface according to data of side-scan sonars”, Proceedings of SPIE - The International Society for Optical Engineering, 10035, (2016), 1003518.
[11] V.A. SHarafutdinov, “O vosstanovlenii lambertovskoy opticheskoy krivoy po dvum eye izobrazheniyam”, Doklady AN, 249:3, (1979), 565–568.
[12] I.V. Prokhorov, A.A. Sushchenko, “O korrektnosti zadachi Koshi dlya uravneniya perenosa izlucheniya s frenelevskimi usloviyami sopryazheniya”, Sibirskiy matematicheskiy zhurnal, 56:4, (2015), 922–933.
[13] I.V. Prokhorov, A.A. Sushchenko, A. Kim, “Nachal’no-krayevaya zadacha dlya uravneniya perenosa izlucheniya s diffuznymi usloviyami sopryazheniya”, Sibirskiy zhurnal industrial’noy matematiki, 20:1, (2017), 75-85.
[14] I.V. Prokhorov, A.A. Sushchenko, “Zadacha Koshi dlya uravneniya perenosa izlucheniya v neogranichennoy srede”, Dal’nevostochnyy matematicheskiy zhurnal, 18:1, (2018), 101-111.
[15] A.A. Amosov, “Initial-Boundary Value Problem for the Non-Stationary Radiative Transfer Equation with Fresnel Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 231:3, (2018), 279–337.
[16] A.A. Amosov, “Initial-Boundary Value Problem for the Nonstationary Radiative Transfer Equation with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 235:2, (2018), 117–137.
[17] V. Lekomtsev, “Gidroakusticheskiye sredstva vizualizatsii dlya neobitayemykh podvodnykh apparatov”, Sovremennyye tekhnologii avtomatizatsii, 2013, ¹3, 78–82.

To content of the issue