Far Eastern Mathematical Journal

To content of the issue


Circular symmetrization and Green function


Dubinin V.N.

2019, issue 1, Ñ. 24-30


Abstract
We study the behaviour of the Green function under the circular symmetrization of a domain on the Riemann surface.

Keywords:
circular symmetrization, Green function, Green energy of a discrete charge

Download the article (PDF-file)

References

[1] J. Krzyz, “Circular symmetrization and Green’s function”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 7, (1959), 327–330.
[2] A. Baernstein, “Integral means, univalent functions and circular symmetrization”, Acta math., 133:3-4, (1974), 139–169.
[3] A. Baernstein, B. A. Taylor, “Spherical rearrangements, subharmonic functions, and *-functions in n-space”, Duke Math. J., 43, (1976), 245–268.
[4] M. Essen, D. Shea, “On some questions of uniqueness in the theory of symmetrization”, Ann. Acad. Sci. Rain. Ser. A I Math., 4, (1978/1979), 311–340.
[5] A. Weitsman, “Symmetrization and the Poincari metric”, Ann. of Math., 124:2, (1986), 159–169.
[6] A. Fryntov, “Extremal properties of Green functions and A. Weitsman’s conjecture”, Trans. Amer. Math. Soc., 345:2, (1994), 511–525.
[7] A.Iu. Solynin, “Poliarizatsiia i funktsional'nye neravenstva”, Algebra i analiz, 8:6, (1996), 148–185.
[8] V.N. Dubinin, “Simmetrizatsiia, funktsiia Grina i konformnye otobrazheniia”, Zap. nauchn. sem. POMI, 226, (1996), 80–92.
[9] V.N. Dubinin, “Novaia versiia krugovoi simmetrizatsii s prilozheniiami k p-listnym funktsiiam”, Matem. sb., 203:7, (2012), 79-94.
[10] V. N. Dubinin, “Krugovaia simmetrizatsiia kondensatorov na rimanovykh poverkhnostiakh”, Matem. sb., 206:1, (2015), 69–96.
[11] V. N. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Variables and Elliptic Equations, 59:1, (2014), 59–66.
[12] V. N. Dubinin, V. Y. Kim, “Covering theorem for p-valent functions with Montel’s normalization”, Journal of Mathematical Analysis and Applications, 428:1, (2015), 502–507.
[13] V. N. Dubinin, “O logarifmicheskoi energii nulei i poliusov ratsional'noi funktsii”, Sib. matem. zhurn., 57:6, (2016), 1255–1261.
[14] V. N. Dubinin, “Poias lemniskat i teoremy iskazheniia dlia mnogolistnykh funktsii. II”, Matem. zametki, 104:5, (2018), 700–707.
[15] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966.
[16] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Springer, Basel: Birkhauser, 2014, xii+344 pp.

To content of the issue