Far Eastern Mathematical Journal

To content of the issue


Stabilization of vortex flows through an annular domain


Morgulis A.B.

2019, issue 1, Ń. 108-113


Abstract
In this note, we consider the planar nonstationary through-flow problem for ideal incompressible and homogeneous fluid in an annular domain and describe the behavior of its solutions when $t\to +\infty$.

Keywords:
inviscid fluid flow, vortex flow, through flow, stabilization

Download the article (PDF-file)

References

[1] G.V. Alekseev, “O stabilizatsii reshenii dvumernykh uravnenii dinamiki ideal'noi zhidkosti”, Prikl. mekh. tekhn. fiz., 102:2, (1977), 85–92.
[2] A.B. Morgulis, V.I. Iudovich, “Asimptoticheskaia ustoichivost' statsionarnogo rezhima protekaniia ideal'noi neszhimaemoi zhidkosti”, Sib. matem. zhurn., 43:4, 840–857.
[3] A. Morgulis, V. Yudovich, “Arnold’s method for asymptotic stability of steady inviscid incompressible flow through a fixed domain with permeable boundary”, Chaos, 12:2, 356–371.
[4] A.B. Morgulis, “Non-linear Asymptotic Stability for the Through-Passing Flows of Inviscid Incompressible Fluid”, Asymptotic Analysis, 66, 229–247.
[5] A.B. Morgulis, “Variatsionnye printsipy i ustoichivost' otkrytykh techenii ideal'noi neszhimaemoi zhidkosti”, Cibirskie elektronnye matematicheskie izvestiia, 14, 218–251.
[6] V.I. Iudovich, “Dvumernaia nestatsionarnaia zadacha o protekanii ideal'noi neszhimaemoi zhidkosti cherez zadannuiu oblast'”, Matem. sbornik, 64 (106):4, (1964), 562–588.
[7] G.V. Alekseev, “O razreshimosti neodnorodnoi kraevoi zadachi dlia dvumernykh nestatsionarnykh uravnenii dinamiki ideal'noi zhidkosti”, Dinamika sploshnoi sredy, 24, (1976), 15–35.
[8] C. Bardos, “Existence et Unicite de la Solution de l’Equation d’Euler en Dimention Deux”, J. Math. Analysis Appl., 40, (1972), 769–790.

To content of the issue