Far Eastern Mathematical Journal

To content of the issue

Solution of functional equations related to elliptic functions. III

Illarionov A.A., Markova N.V.

2019, issue 2, Ń. 197–205

Let $s, m\in \Bbb N$, $s\ge2$. We solve the functional equation $$f_1(x_1+z)\ldots f_{s-1}(x_{s-1}+z)f_s(x_1+\ldots+x_{s-1}-z)=\sum_{j=1}^{m}\varphi_j(x_1,\ldots,x_{s-1})\psi_j(z),$$ for unknown entire functions $f_1,\ldots,f_s:\Bbb C\to\Bbb C$, $\varphi_j:\Bbb C^{s-1}\to \Bbb C$, $\psi_j:\Bbb C\to\Bbb C$ in the case of $s\ge3$, $m\le2s-1$. All non-elementary solutions are described by the Weierstrass sigma-function. Previously, such results were known for $m\le s+1$. The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.

addition theorem, functional equation, Weierstrass sigma-function, theta function, elliptic function

Download the article (PDF-file)


[1] V.M. Bukhshtaber, D.V. Leikin, “Trilineinye funktsional'nye uravneniia”, UMN, 60:2, (2005), 151–152.
[2] V.M. Bukhshtaber, D.V. Leikin, “Zakony slozheniia na iakobianakh ploskikh algebraicheskikh krivykh”, Tr. MIAN, 251, (2005), 54–126.
[3] V.M. Bukhshtaber, I.M. Krichever, “Integriruemye uravneniia, teoremy slozheniia i problema Rimana-Shottki”, UMN, 61:1, (2006), 25–84.
[4] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2, (1992), 363–376.
[5] M. Bonk, “The addition theorem of Weierstrass’s sigma function”, Math. Ann., 298:1, (1994), 591–610.
[6] M. Bonk, “The Characterization of Theta Functions by Functional Equations”, Abh. Math. Sem. Univ. Hamburg, 65, (1995), 29–55.
[7] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1–2, (1997), 54–72.
[8] V.A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniia”, Funkts. analiz i ego pril., 50:3, (2016), 34–46.
[9] A.A. Illarionov, “Funktsional'noe uravnenie i sigma-funktsiia Veiershtrassa”, Funkts. analiz i ego pril., 50:4, (2016), 43–54.
[10] A.A. Illarionov, “Reshenie funktsional'nykh uravnenii, sviazannykh s ellipticheskimi funktsiiami”, Analiticheskaia teoriia chisel, Sbornik statei. K 80-letiiu so dnia rozhdeniia Anatoliia Alekseevicha Karatsuby, Tr. MIAN, 299, (2017), 105–117.
[11] A.A. Illarionov, M.A. Romanov, “Giperkvazimnogochleny dlia teta-funktsii”, Funkts. analiz i ego pril., 52:3, (2018), 84–87.
[12] A.A. Illarionov, “O polilineinom funktsional'nom uravnenii”, Matem. zametki, (v pechati).
[13] A.A. Illarionov, “Reshenie funktsional'nykh uravnenii, sviazannykh s ellipticheskimi funktsiiami. II”, Sib. elektron. matem. izv., 16, (2019), 481–492.
[14] A.A. Illarionov, “Giperellipticheskie sistemy posledovatel'nostei ranga 4”, Matem. sb., 210:9, (2019), 59–88.

To content of the issue