Far Eastern Mathematical Journal

To content of the issue


Determination of the coefficient of bottom scattering during multi-beam sounding of the ocean


Kovalenko E.O., Prokhorov I.V.

2019, issue 2, Ñ. 206–222


Abstract
Mathematical problems of constructing sonar images of the seabed according to measurements of a multi-beam side-scan sonar are considered. In the framework of the model based on the non-stationary equation of radiation transfer, the inverse problem of finding the bottom scattering coefficient is investigated. A new method is proposed for solving the inverse problem under the assumption of single scattering and pulsed sounding mode. A numerical analysis of the quality of the images of the seabed is carried out depending on the number of sensing angles, the width of the radiation pattern of the receiving antennas and the level of volume scattering in the medium.

Keywords:
radiative transfer equation, inverse problem, bottom and volume scattering, multi-beam sounding

Download the article (PDF-file)

References

[1] R.D. Urik, Osnovy gidroakustiki, Sudostroenie, L., 1978.
[2] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.
[3] A.V. Bogorodskii, G.V. Iakovlev, E. A. Korepin, A. K. Dolzhikov, Gidroakusticheskaia tekhnika issledovaniia i osvoeniia okeana, Gidrometeoizdat, L., 1984.
[4] G. Griffiths, Technology and Applications of Autonomous Underwater Vehicles, CRC Press, London, 2002.
[5] Iu.V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknaria, E. V. Tutynin, “Puti sovershenstvovaniia gidroakusticheskikh tekhnologii obsledovaniia morskogo dna s ispol'zovaniem avtonomnykh neobitaemykh podvodnykh apparatov”, Podvodnye issledovaniia i robototekhnika, 8:2, (2009), 4–15.
[6] J.A. Turner, R.L.Weaver, “Radiative transfer of ultrasound”, The Journal of the Acoustical Society of America, 96:6, (1994), 3654–3674.
[7] J.E. Quijano, L.M. Zurk, “Radiative transfer theory applied to ocean bottom modeling”, The Journal of the Acoustical Society of America, 126:4, (2009), 1711–1723.
[8] I.V. Prokhorov, V.V. Zolotarev, I.B. Agafonov, “Zadacha akusticheskogo zondirovaniia vo fluktuiruiushchem okeane”, Dal'nevostochnyi matematicheskii zhurnal, 11:1, (2011), 76–87.
[9] I.V. Prokhorov, A.A. Sushchenko, “Issledovanie zadachi akusticheskogo zondirovaniia morskogo dna metodami teorii perenosa izlucheniia”, Akusticheskii zhurnal, 61:3, (2015), 400–408.
[10] I.V. Prokhorov, A.A. Sushchenko, V.A. Kan, “Ob odnoi zadache opredeleniia rel'efa dna fluktuiruiushchego okeana”, Sib. zhurn. industr. matem., 18:2, (2015), 99–110.
[11] E.O. Kovalenko, A.A. Sushchenko, I.V. Prokhorov, “Processing of the information from side-scan sonar”, Proceedings of SPIE, 10035, (2016), 100352C.
[12] E.O. Kovalenko, A.A. Sushchenko, V.A. Kan, “Focusing of sonar images as an inverse problem for radiative transfer equation”, Proceedings of SPIE, 10833, (2018), 108336D.
[13] I.V. Prokhorov, A.A. Sushchenko, A. Kim, “Nachal'no-kraevaia zadacha dlia uravneniia perenosa izlucheniia s diffuznymi usloviiami sopriazheniia”, Sibirskii zhurnal industrial'noi matematiki, 20:1, (2017), 75–85.
[14] I.V. Prokhorov, A.A. Sushchenko, “Zadacha Koshi dlia uravneniia perenosa izlucheniia v neogranichennoi srede”, Dal'nevostochnyi matematicheskii zhurnal, 18:1, (2018), 101–111.
[15] A.A. Amosov, “Initial-Boundary Value Problem for the Non-Stationary Radiative Transfer Equation with Fresnel Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 231:3, (2018), 279–337.
[16] A.A. Amosov, “Initial-Boundary Value Problem for the Non-stationary Radiative Transfer Equation with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 235:2, (2018), 117–137.
[17] A.A. Amosov, “Nonstationary radiation transfer through a multilayered medium with reflection and refraction conditions”, Mathematical Methods in the Applied Sciences, 41:17, (2018), 8115–8135.
[18] I.V. Prokhorov, “Zadacha Koshi dlia uravneniia perenosa izlucheniia s frenelevskimi i lambertovskimi usloviiami sopriazheniia”, Matem. zametki, 105:1, (2019), 95–107.
[19] A. Kim, I.V. Prokhorov, “Initial-boundary value problem for a radiative transfer equation with generalized matching conditions”, Siberian Electronic Mathematical Reports, 16, (2019), 1036–1056.
[20] O.V. Filonin, Malorakursnaia tomografiia, SNTs RAN, Samara, 2006.
[21] D.S. Anikonov, V.G. Nazarov, I.V. Prokhorov, “Algorithm of finding a body projection within an absorbing and scattering medium”, Journal of Inverse and Ill-posed Problems, 18:8, (2011), 885–893.
[22] D.S. Anikonov, V.G. Nazarov, “Zadacha dvurakursnoi tomografii”, Zh. vychisl. matem. i matem. fiz., 52:3, (2012), 372–378.
[23] D.S. Anikonov, V.G. Nazarov, I.V. Prokhorov, “Zadacha odnorakursnogo zondirovaniia neizvestnoi sredy”, Sib. zhurn. industr. matem., 14:2, (2011), 21–27.

To content of the issue