Far Eastern Mathematical Journal

To content of the issue


Simple and complex mathematical models of stationary transport theory


D. S. Anikonov

2002, issue 1, Ñ. 18–23


Abstract
Some papers of transport theory are analyzed. On this based it is noticed that the traditional separation of mathematical models for simple and complex is not always suitable for nonclassical problems. It is given the recommendation for a choice of mathematical models which can increase effectiveness and applied significance of investigation.

Keywords:

Download the article (PDF-file)

References

[1] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoj teorii perenosa chastic”, Tr. MIAN, 61, 1961, 3–158
[2] T. A. Germogenova, Lokal'nye svojstva resheniya uravneniya perenosa, Nauka, M., 1968, 272 s.
[3] D. S. Anikonov, “Edinstvennost' opredeleniya koe'fficienta uravneniya perenosa pri special'nom vide istochnika”, DAN, 284:5 (1985), 511–515.
[4] D. S. Anikonov, “Postroenie indikatora neodnorodnosti pri radiacionnom obsledovanii sredy”, DAN, 357:3 (1997), 324–327.
[5] D. S. Anikonov, “Sravnenie dvux matematicheskix modelej teorii perenosa izlucheniya”, DAN, 361:2 (1998), 171–173.
[6] D. S. Anikonov, I. V. Proxorov, “Opredelenie koe'fficienta uravneniya perenosa pri e'nergeticheskix i uglovyx osobennostyax vneshnego izlucheniya”, DAN, 327:2 (1992), 205–207.
[7] D. S. Anikonov, V. G. Nazarov, I. V. Proxorov, “Vidimye i nevidimye sredy v tomografii”, DAN, 357:5 (1997), 599–603.
[8] A. E. Kovtanyuk, “Opredelenie vnutrennej struktury sredy posredstvom mnogokratnogo oblucheniya”, Dal'nevostochnyj mat. sbornik, 1995, ¹ 1, 101–118.
[9] D. S. Anikonov, A. E. Kovtanuyk and I. V. Prokhorov, “Investigation of scattering and absorbing media by the method of X-ray tomography”, J. Inv. Ill Posed Problems, 1:4 (1993), 259–281.

To content of the issue