Far Eastern Mathematical Journal

To content of the issue


Extremal decomposition problems for p-harmonic Robin radius


Afanaseva-Grigoreva A.S., Prilepkina E.G.

2020, issue 2, Ñ. 135–143
DOI: https://doi.org/10.47910/FEMJ202014


Abstract
The theorems on the extremal decomposition of plane domains concerning to the products of Robin's radii are extended to the case of domains in Euclidean space. In some cases, the classical non-overlapping condition is weakened. The proofs are based on the moduli technique for families of curves and dissymmetrization.

Keywords:
p-harmonic radius, Robin radius, modulus of a family of curves, dissymmetrization, extremal decompositions

Download the article (PDF-file)

References

[1] M. A. Lavrent'ev, “ K teorii konformnykh otobrazhenii” , Trudy fiz. mat. in-ta im. V.A. Steklova., 5, (1934), 159–245.
[2] P. P. Kufarev, “ O konformnykh otobrazheniiakh dopolnitel'nykh oblastei” , Dokl. akad. nauk SSSR, 73, (1950), 881–884.
[3] G. V. Kuz'mina, “ Ob odnom ekstremal'no-metricheskom podkhode k zadacham ob ekstremal'nom razbienii” , Analiticheskaia teoriia chisel i teoriia funktsii. 32, Zap. nauchn. sem. POMI, 449, (2016), 214–229.
[4] A. K. Bakhtin, I. V. Denega, “Sharp estimates of products of inner radii of non-overlapping domains in the complex plane”, Probl. Anal. Issues Anal., 8(26):1, (2019), 17–31.
[5] A. Bakhtin, L. Vygivska and I. Denega, “N-Radial Systems of Points and Problems for Non-Overlapping Domains”, Lobachevskii Journal of Mathematics, 38:2, (2017), 229–235.
[6] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014.
[7] V. N. Dubinin, D. A. Kirillova, “ K zadacham ob ekstremal'nom razbienii” , Analiticheskaia teoriia chisel i teoriia funktsii. 23, Zap. nauchn. sem. POMI, 357, 2008, 54–74.
[8] E.G. Prilepkina, “ O printsipakh kompozitsii dlia privedennykh modulei” , Sib. matem. zhurn., 52:6, (2011), 1357–1372.
[9] B.E. Levitskii, “ Privedennyi p-modul' i vnutrennii p-garmonicheskii radius” , Dokl. AN SSSR, 316:4, (1991), 812–815.
[10] C. Bandle, M. Flucher, “Harmonic radius and concentration of energy, hyperbolic radius n+2 and Liouvilles equations ?U = 0 and ?U = U n?2 ”, SIAM Review, 38:2, (1996), 191–238.
[11] W. Wang, “N-Capacity, N-harmonic radius and N-harmonic transplantation”, J. Math. Anal. Appl., 327:1, (2007), 155–174.
[12] V. N. Dubinin, E. G. Prilepkina, “ Ob ekstremal'nom razbienii prostranstvennykh oblastei” , Analiticheskaia teoriia chisel i teoriia funktsii. 15, Zap. nauchn. sem. POMI, 254, 1998, 95–107.
[13] K. A. Gulyaeva, S. I. Kalmykov, E. G. Prilepkina, “Extremal decomposition problems in the Euclidean space”, International Journal of Mathematical Analysis, 9:56, (2015), 2763–2773.
[14] S. Kalmykov, E. Prilepkina, “Extremal decomposition problems for p-harmonic radius”, Analysis Mathematica, 43, (2017), 49–65.
[15] C. I. Kalmykov, E. G. Prilepkina, “ O p-garmonicheskom radiuse Robena v evklidovom prostranstve” , Analiticheskaia teoriia chisel i teoriia funktsii. 32, Zap. nauchn. sem. POMI, 449, 2016, 196–213.
[16] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, N.J., Van Nostrand, 1966.
[17] B. Fuglede, “Extremal length and functional completion”, Acta. Math., 98:3-4, (1957), 171–219.
[18] M. Vuorinen, Conformal geometry and quasiregular mapping, Lecture Notes in Mathematics, Springer-Verlag, 1988.
[19] V. A. Shlyk, “ O ravenstve p-emkosti i p-modulia” , Sib. matem. zhurn., 34:6, (1993), 216—221.
[20] V. N. Dubinin, “Capacities and geometric transformations of subsets in n-space”, Geometric and Functional Analysis, 3:4, (1993), 342–369.
[21] F.W. Gehring, “A remark on domains quasiconformally equivalent to a ball”, Ann. Acad. Sci. Fenn., 2, (1976), 47–155.

To content of the issue