Far Eastern Mathematical Journal

To content of the issue


Boundary-value problems for heat and mass transfer equations with homogeneous velocity boundary conditions


D. A. Tereshko

2002, issue 1, Ñ. 24–33


Abstract
This paper deal with the boundary-value problem for the stationary heat and mass transfer equations with homogeneous non-standard boundary conditions for the velocity and mixed boundary conditions for the temperature and concentration. The global existence theorem is proved. The precise a priori estimates for the solution are derived.

Keywords:

Download the article (PDF-file)

References

[1] A. V. Kazhixov, “Razreshimost' nekotoryx odnostoronnix kraevyx zadach dlya uravnenij Nav'e-Stoksa”, Dinamika sploshnoj sredy, 16, IG SO AN SSSR, Novosibirsk, 1974, 5–34.
[2] V. V. Ragulin, “K zadache o protekanii vyazkoj zhidkosti skvoz' ogranichennuyu oblast' pri zadannom perepade davleniya ili napora”, Dinamika sploshnoj sredy, 16, IG SO AN SSSR, Novosibirsk, 1976, 78–92.
[3] O. Pironneau, “Conditions aux limites sur la pression pour les e?quations de Stokes et de Navier-Stokes”, C. R. Acad. Sci., 303:1 (1986), 403–406.
[4] C. Be?gue, C. Conca, F. Murat and O. Pironneau, “A nouveau sur les e?quations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression”, C. R. Acad. Sci., 304:1 (1987), 23–28, Paris.
[5] C. Conca, F. Murat and O. Pironneau, “The Stokes and Navier-Stokes equations with boundary conditions involving the pressure”, Japan. J. Math., 20 (1994), 279–318.
[6] G. V. Alekseev and D. A. Tereshko, “On solvability of inverse extremal problem for stationary equations of viscous heat conducting fluid”, J. Inverse Ill-Posed Probl., 6 (1998), 521–562.
[7] G. V. Alekseev, D. A. Tereshko, “Stacionarnye zadachi optimal'nogo upravleniya dlya uravnenij gidrodinamiki vyazkoj teploprovodnoj zhidkosti”, Sib. zhurn. industrial'noj matem., 1:2 (1998), 24–44.
[8] G. V. Alekseev, D. A. Tereshko, Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplovoj konvekcii II, Preprint ¹ 30 IPM DVO RAN, Dal'nauka, Vladivostok, 1998.
[9] G. V. Alekseev, A. B. Smyshlyaev, Razreshimost' neodnorodnyx kraevyx zadach dlya stacionarnyx uravnenij gidrodinamiki vyazkoj teploprovodnoj zhidkosti, Preprint ¹ 6 IPM DVO RAN, Dal'nauka, Vladivostok, 1999.
[10] G. V. Alekseev and A. B. Smishliaev, “Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions”, J. Math. Fluid Mech., 3:1 (2001), 18–39.
[11] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986.
[12] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Preprint ¹ 19 IPM DVO RAN, Dal'nauka, Vladivostok, 2000.

To content of the issue