Numerical experiment in turbulence (on the 100th anniversary of Academician O.M. Belotserkovsky) |
Fortova S.V. |
2025, issue 2, P. 148–193 DOI: https://doi.org/10.47910/FEMJ202512 |
Abstract |
| The paper presents the main results on numerical modeling of turbulent flows, carried out under the guidance of academician O.M. Belotserkovsky and continued by his students. For the problem of the shear layer of a liquid, the process of formation of spatial turbulence and a developed large-scale turbulent flow is analyzed. It is shown that large vortices play a leading role in the formation of the direct Kolmogorov energy cascade (Belotserkovsky's hypothesis). When studying the modes of two-dimensional flow of a viscous, slightly compressible liquid under the action of an external periodic force in both coordinates, the modified Kolmogorov flow, various methods for analyzing hydrodynamic characteristics were used and tested. The implemented approaches make it possible to specify which of the flow modes: laminar, chaotic, and vortex – can be observed when selecting the bottom friction coefficient, amplitude, and pumping force. For the modified Kolmogorov flow, the development of the reverse energy cascade characteristic of vortex flows in two-dimensional turbulence is numerically demonstrated. The problem of the flow of an incompressible rotating fluid in a cube shows the formation of column vortices and the occurrence of both a direct cascade of energy, characteristic of three-dimensional turbulence, and the reverse, characteristic of flat flows. A model is proposed and numerical simulation of the elastic turbulence effect that occurs for small Reynolds numbers in the presence of a polymer impurity in the flow is performed. |
Keywords: numerical modeling, turbulent flows, forward and reverse energy cascades, Kolmogorov problem, quasi-two-dimensional flows, shear flows, elastic turbulence. |
Download the article (PDF-file) |
References |
| [1] Richardson L.F., “The supply of energy from and to atmospheric eddies”, Proc. Roy. Soc. London, 97A, (1920), 354–373. [2] Kolmogorov A.N., “Lokal'naya struktura turbulentnosti v neszhimaemoi zhidkosti pri ochen' bol'shikh chislakh Reinol'dsa”, Dokl. AN SSSR, 30:4, (1941), 299–303. [3] Obukhov A.M., “O raspredelenii energii v spektre turbulentnogo potoka”, Izv. AN SSSR. Ser. geogr. i geofiz., 5:4, (1941), 453–466. [4] Fiztekhovskii proryv — ugol ataki: k 80-letiyu so dnya rozhdeniya akademika O. M. Belotserkovskogo, Nauka, M., 2006, 400 s. [5] Belotserkovskii O.M., Fortova S.V., “Makroparametry prostranstvennykh techenii v svobodnoi sdvigovoi turbulentnosti”, ZH. vychisl. matem. i matem. fiz., 50:6, (2010), 1126–1139. [6] Belotserkovskii O.M., Oparin A.M., Chechetkin V.M., Turbulentnost': novye podkhody, Nauka, M., 2002, 285 s. [7] Belotserkovskii O.M., Gushchin V.A., Kon'shin V.N., “Metod rasshchepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnost'yu”, ZH. vychisl. matem. i matem. fiz., 27:4, (1987), 594–609. [8] Kraichnan R.H., “Inertial Ranges in Two-Dimensional Turbulence”, Phys. Fluids, 10, (1967), 1417–1423. [9] Arnol'd V.I., Meshalkin L.D., “Seminar A.N. Kolmogorova po izbrannym voprosam analiza (1958–1959)”, UMN, 15:1, (1960), 247–250. [10] Bondarenko N.F., Gak M.Z., Dolzhanskii F.V., “Laboratornaya i teoreticheskaya modeli ploskogo periodicheskogo techeniya”, Izv. AN, FAO, 15 (10), (1979), 1017–1026. [11] Meshalkin, L., Sinai, I.G., “Investigation of the Stability of a Stationary Solution of a System of Equations for the Plane Movement of an Incompressible Viscous Liquid”, Journal of Applied Mathematics and Mechanics, 25 (6), (1961), 1700–1705. [12] Sivashinsky G., Yakhot V. Negative viscosity effect in largescale flows, Phys. Fluids, 28 (4), (1985), 1040–1042. [13] Gotoh K., Yamada M., “The instability of rhombic cell flows”, J. Phys. Soc. Jpn., 53:10, (1984), 3395–3398. [14] Bormashenko E., Shoval S., Negative-Viscosity Materials: Exploiting the Effect of Negative Mass Materials, v. 18, 2025, 1199 pp. [15] Sommeria J., “Experimental study of the two-dimensional inverse energy cascade in a square box”, Journal of Fluid Mechanics, 170 (September 1986), 139–168. [16] Smith L.M., Yakhot V., “Finite-size effects in forced two-dimensional turbulence”, J. Fluid Mech., 274, (1994), 115–138. [17] Borue V., “Inverse energy cascade in stationary two-dimensional homogeneous turbulence”, Phys. Rev. Lett., 72 (10), (1994), 1475–1478. [18] Clercx H.J.H., Nielsen A.H., Torres D.J., Coutsias E.A., “Two-dimensional turbulence in square and circular domains with no-slip walls”, Eur. J. Mech. B-Fluids, 20, (2001), 557–576. [19] Molenaar D., Clercx H.J.H., Heijst G.J.F. van, Physica D, 196, (2004), 329–340. [20] Xia H., Shats M., Falkovich G., “Spectrally condensed turbulence in thin layers”, Phys. Fluids, 21, (2009), 125101. [21] Francois N., Xia Y., Punzmann H., Ramsden S., Shats M., “Three-Dimensional Fluid Motion in Faraday Waves: Creation of Vorticity and Generation of Two-Dimensional Turbu-lence”, Phys. Rev. X, 4, (2014), 021021. [22] Tsang Yue-Kin, William R. Young, “Forced-dissipative two-dimensional turbulence: a scaling regime controlled by drag”, Physical Review E, 79, (2009), 045308(R). [23] Tsang Yue-Kin, “Non-universal velocity probability densities in forced two-dimensional turbulence: the effect of large-scale dissipation”, Physics of Fluids, 22, (2010), 115102. [24] Chertkov M., Connaughton C., Kolokolov I., Lebedev V., “Dynamics of Energy Condensation in Two-Dimensional Turbulence”, Phys. Rev. Lett, 99, (2007), 084501. [25] Kolokolov I.V., Lebedev V.V., “Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box”, Phys. Rev. E, 93, (2016), 033104. [26] Kolokolov I.V., Lebedev V.V., “Coherent vortex in two-dimensional turbulence: Interplay of viscosity and bottom friction”, Phys. Rev. E, 102, (2020), 023108. [27] Mishra P.K., Herault J., Fauve S., Verma M.K., “Dynamics of reversals and condensates in two-dimensional Kolmogorov flows”, Phys. Rev. E, 91, (2015), 053005. [28] Fylladitakis E.D., “Kolmogorov Flow: Seven Decades of History”, Journal of Applied Mathematics and Physics, 6, (2018), 2227–2263. [29] Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V., “Coherent vortex versus chaotic state in two-dimension turbulence”, Annals of Physics, 447 part 2, (2022), 169072. [30] Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V., “Coherent vortex in a spatially restricted two-dimensional turbulent flow in absence of bottom friction”, Physics of Fluids, 33, (2021), 011704. [31] Posudnevskaya A.O., Fortova S.V., Doludenko A.N., Kolokolov I.V., Lebedev V.V., “Chislennoe issledovanie perekhodnykh rezhimov techeniya Kolmogorova v kvadratnoi yacheike”, Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 64:9, (2024), 1727–1736. [32] Pletcher R.H., Tannehill J.C., Anderson D.A., Computational Fluid Mechanics and Heat Transfer, 3rd ed., CRC Press, Boca Raton, FL, 2013. [33] MacCormack R.W., “The effect of viscosity in hypervelocity impact cratering”, 4th Aero-dynamic Testing Conference, 28 April 1969 – 30 April 1969 (Cincinnati, OH), 1969, AIAA Paper. [34] Fock V., “Konfigurationsraum und zweite Quantelung”, Z. Physik., 75, (1932), 622–647. [35] Guzev M.A., Fortova S.V., Doludenko A.N., Posudnevskaya A.O., Ermakov A.D., “Maslov rank distributions for the analysis of two-dimensional and quasi-two-dimensional turbulent flows”, Russian journal of mathematical physics, 31:3, (2024), 438–449. [36] Guzev M.A., Doludenko A.N., Ermakov A.D., Posudnevskaya A.O., Fortova S.V., “Direct numerical simulation and rank analysis of two-dimensional Kolmogorov-type vortex flows”, Supercomputing frontiers and innovations, 12:1, (2025), 43–59. [37] Auerbach F., “Das Gesetz der Bevolkerungskonzentration”, Petermanns geographische mit-teilungen, 59, (1913), 74–76. [38] Lotka A.J., “The frequency distribution of scientific productivity”, Journal of Architectural and Planning Research, 1926. [39] Gleason H.A., “The significance of Raunkiaer’s law of frequency”, Ecology, 10:4, (1929). [40] Gutenberg B., Richter C. F., “Frequency of earthquakes in California”, Bull. Seismol. Soc. Am., 34, (1944). [41] Zipf G.K., Human Behavior And The Principle Of Least Effort, Addison-Wesley Press, 1949. [42] Puzachenko YU.G., “Rangovye raspredeleniya v ekologii i neekstensivnaya statisticheskaya mekhanika”, Sbornik trudov Zoologicheskogo muzeya MGU im. M. V. Lomonosova, 54, (2016), 42–71. [43] Mandelbrot B., “Statistical Macro-Linguistics”, Il Nuovo Cimento, 13, (1959), 518–520. [44] Lees R.B., “Logique, langage et theorie de l’information by Leo Apostel, Benoit Mandelbrot, and Albert Morf”, Source: Language, 35, (1959), 271–303. [45] Kolmogorov A. N., “Tri podkhoda k opredeleniyu ponyatiya “kolichestvo informatsii”, Probl. peredachi inform., 1:1, (1965), 3–11. [46] Maslov V.P., “Ob odnoi obshchei teoreme teorii mnozhestv, privodyashchei k raspredeleniyu Gibbsa, Boze-Einshteina, Pareto i zakonu Tsipfa Mandel'brota dlya fondovogo rynka”, Mat. zametki, 78:6, (2005), 870–877. [47] Tumachev D.D., Filatov S.V., Vergeles S.S., Levchenko A.A., “Dva rezhima dinamiki kogerentnykh stolbovykh vikhrei vo vrashchayushcheisya zhidkosti”, Pis'ma v Zhurnal eksperimental'noi i teoreticheskoi fiziki, 118:6, (2023), 430–437. [48] Campagne A., Gallet B., Moisy F., Cortet P.P., “Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment”, Phys. Rev. E, 91, (2015). [49] Levina G.V., Moiseev S.S., Rutkevich P.B., “Hydrodynamic Alpha-Effect in a Convective System”, Non-Linear Instability, Chaos and Turbulence, Series Advances in Fluid Mechanics, 2000, 110–161. [50] Yue-Kin Tsang, “Nonuniversal velocity probability densities in two-dimensional turbulence: The effect of large-scale dissipation”, Phys. Fluids, 22, (2010), 115102. [51] Chertkov M., Connaughton C., Kolokolov I., Lebedev V., “Dynamics of energy condensation in two-dimensional turbulence”, Phys. Rev. Lett., 99, (2007), 084501. [52] Steinberg V., “Elastic Turbulence: An Experimental View on Inertialess Random”, Flow. Annu. Rev. Fluid Mech., 53, (2021), 27–58. [53] Shahmardi A, Zade S., Ardekani M. N., Poole R. J., Lundell F., Rosti M. E., Brandt L., “Turbulent duct flow with polymers.”, J. Fluid Mech., 859, (2019), 1057–1083. [54] Belan S., Chernykh A., Lebedev V., “Boundary layer of elastic turbulence”, J. Fluid Mech. yr 2018, 855, 910–921. [55] Zhang H.N., Li F.Ch., Cao Y., Tomoaki K., Yu B., “Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow”, Chin. Phys. B, 22:2, (2013), 024703. [56] Groisman A, Steinberg V., “Stretching of polymers in a random three-dimensional flow”, Phys. Rev. Lett., 86, (2001), 934–937. [57] Burghelea T, Segre E, Bar-Joseph I, Groisman A, Steinberg V., “Chaotic flow and efficient mixing in a microchannel with a polymer solution”, Phys. Rev. E, 69, (2004), 066305. [58] Gan H.Y, Lam Y.C, Nguyen N.T., “Polymer-based device for efficient mixing of viscoelastic fluids”, Appl. Phys. Lett., 88, (2006), 224103. [59] Traore B, Castelain C, Burghelea T., “Efficient heat transfer in a regime of elastic turbulence”, J. Non-Newton. Fluid Mech., 223:6, (2015). [60] Whalley R., Abed W. M., Dennis D. J. C., Poole R. J., “Enhancing heat transfer at the micro-scale using elastic turbulence”, Theor. Appl. Mech. Lett., 5:3, (2015), 103–106. [61] Abed W.M., Whalley R.D., Dennis D.J.C., Poole R.J., “Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel”, J. Non-Newton. Fluid Mech., 231, (2016), 68–78. [62] Slutsky M., Steinberg V., “Effective mixing and emulsification of very viscous substances by elastic turbulence”, In Report on the Horowitz Foundation Grant 3355, Weizmann Inst. Sc., Rehovot, Israel, 2005. [63] Poole R.J., Budhiraja B., Cain A.R., Scott P.A., “Emulsification using elastic turbulence”, J. Non-Newton. Fluid Mech., 177–78, (2012), 15–18. [64] Clarke A., Howe A.M., Mitchell J., Staniland J., Hawkes‘L., Leepera K., “Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions”, Soft Matter, 11, (2015), 3536–3541. [65] Howe A. M., Clarke A., Giernalczyk D., “Flow of concentrated viscoelastic polymer solutions in porous media: effect of M(W) and concentration on elastic turbulence onset in various geometries”, Soft Matter, 11, (2015), 6419–6431. [66] Mitchell J., Lyons K., Howe A.M., Clarke A., “Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures”, Soft Matter, 12, (2016), 460–468. [67] Kurganov A., Tadmor E., “New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations”, Journal of Computational Physics, 160, (2000), 241–282. [68] Vaithianathan T., Robert A., Brasseur J. G., Collins L. R., “An improved algorithm for simulating three-dimensional, viscoelastic turbulence”, J. Non-Newtonian Fluid Mech., 140, (2006), 3–22. [69] Vaithianathan T., Collins L. R., “Numerical approach to simulating turbulent flow of a viscoelastic polymer solution”, J. Comput. Phys., 187, (2003), 1–21. [70] Thomases B., Shelley M., Thiffeault J.-L., “A Stokesian viscoelastic flow: transition to oscillations and mixing”, Phys. D: Nonlinear Phenomena, 240, (2011), 1602–1614. [71] Gupta A., Vincenzi D., “Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence”, J. Fluid Mech., 870, (2019), 405–418. [72] Alves M. A., Oliveira P. J., Pinho F. T., “Numerical methods for viscoelastic fluid flows”, Annu. Rev. Fluid Mech., 53, (2021), 509–541. [73] Dubief Y., Terrapon V. E., White C. M., Shaqfeh E. S. G., Moin P., Lele S. K., “New answers on the interaction between polymers and vortices in turbulent flows”, Flow Turbul. Combust., 74, (2005), 311–329. [74] Godunov S.K., Denisenko V.V., Klyuchinskii D.V., Fortova S.V., Shepelev V.V., “Issledovanie entropiinykh svoistv linearizovannoi redaktsii metoda Godunova”, Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 60:4, (2020), 639–651. [75] Denisenko V.V., Fortova S.V., Lebedev V.V., Kolokolov I.V., “Chislennoe modelirovanie obratnogo vliyaniya polimernoi primesi na kolmogorovskoe techenie”, Komp'yuternye issledovaniya i modelirovanie, 16:5, (2024), 1093–1105. [76] Denisenko V.V., Fortova S.V., “Chislennoe modelirovanie elasticheskoi turbulentnosti v ogranichennoi dvumernoi yacheike”, Sibirskii zhurnal industrial'noi matematiki, 26:1, (2023), 55–64. [77] Denisenko V.V., Fortova S.V., “Application of a two-dimensional version of the linearized godunov scheme to the numerical simulation of the kolmogorov problem for a liquid polymer solution”, Siberian Electronic Mathematical Reports, 21:2, (2024), B64-B77. [78] Oldroyd J.G., “On the formulation of rheological equations of state”, Proc. Roy. Soc. London Ser., A200, (1950), 523–541. [79] Novikov S.P., Taimanov I.A., Sovremennye geometricheskie struktury i polya, 2-e izd., ispr., MTSNMO, M., 2014, 584 s. [80] Gouin H., “Remarks on the Lie derivative in fluid mechanics”, Journal of Non-Newtonian Fluid Mech, 150, (2023), 104347. [81] S. de Groot, Mazur P., Neravnovesnaya termodinamika, Mir, M., 1964. |