Relay control in the problem of optimization of complex heat transfer |
Chebotarev A.Yu. |
2025, issue 2, P. 271–277 DOI: https://doi.org/10.47910/FEMJ202521 |
Abstract |
| The problem of optimal control with boundary observation for a stationary model of complex heat transfer is considered. The solvability of the problem is proved and optimality conditions are obtained, on the basis of which the strict principle of bang-bang is substantiated - the relay nature of optimal control. |
Keywords: complex heat transfer, diffusion approximation, optimal control, relay control. |
Download the article (PDF-file) |
References |
| [1] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modeled by SP1-system”, Commun. Math. Sci., 5:4, (2007), 951–969. [2] Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., Hoffmann K.H., “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. of Math. Analysis and Applications, 412, (2014), 520–528. [3] Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3, (2015), 776–784. [4] Grenkin G.V., Chebotarev A.Yu., Kovtanyuk A.E., Botkin N.D., “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2, (2016), 1243–1260. [5] Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., Hoffmann K.H., “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439:2, (2016), 678–689. [6] Chebotarev A.Yu., Kovtanyuk A.E., Grenkin G.V., Botkin N.D., “Nondegeneracy of op-timality conditions in control problems for a radiative-conductive heat transfer model”, Appl. Math. Comput., 289, (2016), 371–380. [7] Grenkin G.V., “Algoritm resheniya zadachi granichnogo optimal'nogo upravleniya v modeli slozhnogo teploobmena”, Dal'nevostochnyi matematicheskii zhurnal, 16:1, (2016), 24–38. [8] Chebotarev A.Yu., Grenkin G.V., Kovtanyuk A.E., “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM: Mathematical Modelling and Numerical Analysis, 51, (2017), 2511–2519. [9] Chebotarev A.YU., “Zadachi optimal'nogo upravleniya dlya uravnenii slozhnogo teplo-obmena s frenelevskimi usloviyami sopryazheniya”, ZH. vychisl. matem. i matem. fiz., 62:3, (2022), 381–390. [10] Fursikov A.V., Optimal'noe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999. [11] Wolff T. H., “A property of measure in Rn and an application to unique continuation”, Geometric and Functional Analysis, 2, (1992), 225–284. |