Far Eastern Mathematical Journal

To content of the issue


Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions


G. V. Alekseev, R. V. Brizitskii

2003, issue 1, Ρ. 108–126


Abstract
Inverse extremum problems for stationary equations of magnetic hydrodynamics under mixed boundary conditions for velocity and electric and magnetic fields are considered. The solvability of the original boundary problem is proved, inverse extremum problems are formulated and existence of solutions of these problems is proved. Application of Lagrange principle is justified, optimality systems are obtained and analyzed both for arbitrary and for specific cost functionals.

Keywords:

Download the article (PDF-file)

References

[1] G. V. Alekseev, Teoreticheskij analiz obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj neszhimaemoj zhidkosti, Preprint Ή 1 IPM DVO RAN, Dal'nauka, Vladivostok, 2002, 78 s.
[2] C. Conca, F. Murat and O. Pironneau, The Stokes and Navier – Stokes equations with boundary conditions involving the pressure, Japan. J. Math., 20 (1994), 196–210.
[3] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya stacionarnyx uravnenij teplomassoperenosa, Preprint Ή 19 IPM DVO RAN, Dal'nauka, Vladivostok, 2000, 60 s.
[4] G. V. Alekseev and A. B. Smishliaev, Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions, J. Math. Fluid Mech., 3:1 (2001), 18–39.
[5] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Razreshimost' kraevoj zadachi dlya stacionarnyx uravnenij teplomassoperenosa pri smeshannyx kraevyx usloviyax, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 84–98.
[6] O. A. Ladyzhenskaya, V. A. Solonnikov, Reshenie nekotoryx nestacionarnyx zadach magnitnoj gidrodinamiki dlya vyazkoj neszhimaemoj zhidkosti, Trudy MIAN im. V. A. Steklova, 59, 1960, 115–173.
[7] V. A. Solonnikov, O nekotoryx stacionarnyx kraevyx zadachax magnitnoj gidrodinamiki, Trudy MIAN im. V. A. Steklova, 59, 1960, 174–187.
[8] M. Sermange & R. Temam, Some mathematical questions related to the MHD equations, Comm Pure. Appl. Math., 36 (1983), 635–664.
[9] S. V. Chizhonkov, Ob odnoj sisteme uravnenij tipa magnitnoj gidrodinamiki, Dokl. AN SSSR, 278:5 (1984), 1074–1077.
[10] M. D. Gunzburger, A. J. Meir & J. S. Peterson, On the existence, uniqueness and finite element approximation of solution of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56:194 (1991), 523–563.
[11] V. N. Samoxin, O stacionarnyx zadachax magnitnoj gidrodinamiki nen'yutonovskix sred, Sib. matem. zhurn., 33:4 (1992), 120–127.
[12] A. J. Meir, The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions, Comp. Math. Applic., 25 (1993), 13–29.
[13] M. Wiedmer, Finite element approximation for equations of magnetohydrodynamics, Math. Comp., 69:229 (1999), 83–101.
[14] G. V. Alekseev, R. V. Brizickij, O razreshimosti smeshannoj kraevoj zadachi dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj neszhimaemoj zhidkosti, Vych. texn., 7:1, spec. vyp. (2002), 242–250.
[15] G. V. Alekseev, R. V. Brizitskii, Boundary value problem for stationary equations of viscous magnetohydrodybamic with mixed boundary conditions, The VIII-th International Symposium on Integrated Application of Environmental and Information Technologies, Sbornik dokladov mezhdunarodnogo simpoziuma, Izd-vo Xabar. gos. texn. un-ta, Xabarovsk, 2002, 124–133 (English).
[16] G. V. Alekseev, R. V. Brizickij, Razreshimost' smeshannoj zadachi dlya stacionarnyx uravnenij magnitnoj gidrodinamiki vyazkoj zhidkosti, Dal'nevost. mat. zh., 3:2 (2002), 285–301.
[17] G. V. Alekseev, Razreshimost' stacionarnyx zadach granichnogo upravleniya dlya uravnenij teplovoj konvekcii, Sib. mat. zhurn., 39:5 (1998), 982–998.
[18] G. V. Alekseev, Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa, Sib. mat. zhurn., 42:5 (2001), 971–991.
[19] G. V. Alekseev, Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394.
[20] A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of $H(rot; \Omega)$ and the construction of the extension operator, Manuscr. Math., 89 (1996), 159–178.
[21] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, University of Toronto, Galamen, 1995.
[22] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986.
[23] L. Hou, S. Ravindran, Computations of boundary optimal control problems for an electrically conducting fluid, J. Comp. Phys., 128 (1996), 319–330.
[24] A. D. Ioffe, V. M. Tixomirov, Teoriya e'kstremal'nyx zadach, Nauka, M.

To content of the issue