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Abstract 
Development of the orbital-free (OF) approach of the density functional theory (DFT) may result 
in a power instrument for modeling of complicated nanosystems with a huge number of atoms. A 
key problem on this way is calculation of the kinetic energy. We demonstrate how it is possible to 
create the OF kinetic energy functionals using results of Kohn-Sham calculations for single atoms. 
Calculations provided with these functionals for dimers of sp-elements of the C, Si, and Ge periodic 
table rows show a good accordance with the Kohn-Sham DFT results. 
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1. Introduction 
The modern materials science and macromolecular chemistry combining nano, micro, and macro scales represent 
special inquiries to modeling of atomic interactions. When the system contains millions or billions of electrons, 
the task to find its quantum-mechanical state using wave functions (orbitals) becomes almost insoluble. Inten-
sive attempts to develop an orbital-free (OF) approach for modeling of polyatomic systems based on the density 
functional theory (DFT) [1] were made by a number of groups in last two decades [2]-[10]. Most of them were 
developed within a pseudopotential approach, however, recently even an all-electron version of the OF method 
appeared [11]. Unfortunately, still now there is not a good comparison between OF and the KS results. Perhaps, 
the reason of this unluckiness is that all OF works stand on idea of using some universal functionals for kinetic 
energy—in approaches of Tomas-Fermi [12] [13], Weizsacker [14], and their modifications and combinations 
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[10] [11]. However, in recent years a number of works appeared [15] [16] in which it was shown that the hypo-
thesis of existence of universal density functional was incorrect, and that first of all it concerned the functional 
of kinetic energy (FKE). Nevertheless, the problem of development of the efficient approach for the OF-modeling 
of polyatomic systems remains tempting and actual. In our recent papers [17] [18], we have showed how it is 
possible, using single-atoms calculations by the Kohn-Sham DFT method (KS-DFT) [19], to find numerically 
the kinetic energy functionals for atoms, and then to use them for orbital-free modeling of atomic interactions. 
We calculated equilibrium distances, and binding energies for dimers contained Al, Si, and P atoms. Now we 
present an expansion of our method for other sp-species. 

2. Methodology 
First, confirm that you have the correct template for your paper size. This template has been tailored for output 
on the custom paper size (21 cm × 28.5 cm). 

As it is known the DFT claims that the energy Eel of the ground state of any quantum system can be found by 
minimization of the some functional depending only on the electronic density of this system ρ:  

[ ] [ ] [ ] [ ] [ ] ( ) ( ) 3d ,el kin ex c H extE E E E E Vρ ρ ρ ρ ρ ρ= + + + − ∫ r r r                  (1) 

where Vext is an external potential, Ekin is kinetic energy, Eex is exchange energy, Ec is correlation energy, and EH 

is Hartree energy: [ ] ( ) ( ) 3 31 d d
2HE

ρ ρ
ρ =

−∫
r r

r r
r r

. 

The total energy Etot is given by integral: 

( ) 3d .tot elE E ρ=   ∫ r r                                   (2) 

Minimization of (1) with a condition ( ) 3dr Nρ =∫ r  means solving the following equation: 

[ ]
0,elEδ ρ

µ
δρ

− =                                     (3) 

where μ is the Lagrange parameter having a sense of the electron chemical potential. 

Introducing [ ] [ ]elE
F

δ ρ
ρ µ

δρ
= − , we obtain the equation 

[ ] ( ) ( ) ( ) ( ) ( ) 0,ext kin ex cF Vρ ϕ µ ρ µ ρ µ ρ µ≡ − + + + + − =r r                    (4) 

where ( ) ( ) 3d
ρ

ϕ
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kin

Eδ ρ
µ ρ
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There are some realistic approximations for exchange ( )exµ ρ  and correlation ( )cµ ρ  potentials; the po-
tential of electron-electron repulsion ( )ϕ r  may be calculated using Fourier transformations; the external po-
tential ( )extV r  usually consists of atomic potentials or of pseudopotentials. The key problem is to find the po-
tential of kinetic energy ( )kinµ ρ . In the Kohn-Sham approach this problem is absent because the kinetic energy 
is calculated using electron orbitals (wave functions).  

Quantum mechanical pseudopotentials are usually constructed for different angular states. Thus, we have to 
present the total density as a sum of partial densities: 

s p dρ ρ ρ ρ= + + +                                   (5) 

For the s-p case, we may write the equations 

[ ] ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, 0,

, 0,

s
s s s kin s ex c s

p
p p p kin p ex c p

F V

F V

ρ ρ ϕ µ ρ µ ρ µ ρ µ

ρ ρ ϕ µ ρ µ ρ µ ρ µ

≡ − + + + + − =

  ≡ − + + + + − = 

r r

r r
                (6) 

where ( )sV r  and ( )pV r  are the s, p components of atomic pseudopotential. The electrostatic potential ( )ϕ r , 

exchange and correlation potentials ( )exµ ρ  and ( )cµ ρ  are calculated through the total density ρ while par-
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tial kinetic potentials ( )s
kin sµ ρ  and ( )p

kin pµ ρ  depend on corresponding partial densities ρs and ρp. 

3. Results and Discussion 
3.1. Single Atoms 
If we calculate the ground state of an atom in the KS-DFT pseudopotential approach, we may declare that its 
partial electron densities minimize their energy functionals or in other words, Equation (6) are satisfied. Thus, 
we can find ( )s

kin sµ ρ  and ( )p
kin pµ ρ  for this single atom as functions of space coordinates: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,

.

s
kin s ex c s

p
kin p ex c p

V

V

µ ϕ µ µ µ

µ ϕ µ µ µ

= − − − +

= − − − +

r r r r r

r r r r r
                         (7) 

In order to calculate the kinetic energy we have to make integration firstly on ρ and then on r: 

( ) ( )3 3d d d d .s p
kin kin s s kin p pE rµ ρ ρ µ ρ ρ= +∫∫ ∫∫ r                          (8) 

Therefore, we have to pass from the coordinate determination of ( )s
kinµ r  and ( )p

kinµ r  to their determina-
tion through ρs and ρp and then coming back to the coordinate determination to make integration over the space.  

Therefore, we can write the partial kinetic functionals ( )s
kin sµ ρ  and ( )p

kin pµ ρ :  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,

,

s
kin s ex c s

p
kin p ex c p

V

V

µ ϕ µ µ µ

µ ϕ µ µ µ

= − − − +

= − − − +

r r r r r

r r r r r
                         (9) 

Let us consider Si, Al, and P atoms as typical atoms with s, p electrons. For constructing of pseudo potentials 
and calculation of equilibrium densities and energies we will use the FHI98pp [20] and FHI96md [21] packages 
widely used for KS-DFT calculations. Exchange and correlation potentials we will consider in the local density 
approximation [22] [23]. Then the partial densities ρs(r) and ρp(r) will look for SI as follows (Figure 1). 

As it was said above we can use dependencies ρs(r) and ρp(r) for passing from the coordinate determination 
( )s

kinµ r  and ( )p
kinµ r  (Figure 2) to their determination through ρs and ρp. Let us compare dependencies 

( )s
kin sµ ρ  and ( )p

kin pµ ρ  for Al, Si, and P atoms as they are shown in Figure 3. Analyzing these curves we can  

see that universal dependence doesn’t exist. There are essential differences between s and p components; and the 
curves received for various atoms, considerably differ from each other. However, we see also important com-
mon features of these curves. 
 

 
Figure 1. Partial densities ρs(r) and ρp(r) for a single Si atom. The point 
of minima corresponds to the atomic center. The solid line shows s-states; 
the points demonstrate p-states. 
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Figure 2. Partial kinetic energy potentials ( )s

kinµ r  and ( )p
kinµ r  

plotted along the line going through the center of Si atom. 
 

 

Figure 3. Dependencies ( )s
kin sµ ρ  and ( )p

kin pµ ρ  for Al, Si, and P 

single atoms. Solid curves describe functionals outside pseudopo-
tential spheres, the hole quadrates demonstrate behavior of func-
tionals inside pseudopotential spheres. 

 
All of them have regions with reverse motion (i.e. two-branches), and besides, each curve has the limited 

range of definition corresponding to the maximum value of density for this atom. Reverse motions of curves 
correspond to densities situated inside pseudopotential spheres. To avoid ambiguity, we will separately determine 
densities inside spheres and outside and will speak about separate kinetic functionals ( )s inside

kin sµ ρ− , ( )s outside
kin sµ ρ− , 

( )p inside
kin pµ ρ− , and ( )p outside

kin pµ ρ− . 

3.2. Atomic Dimers 
An attempt to consider atomic interactions in dimers leads immediately to the problem: atomic densities are sum-
marized and under certain conditions (a close arrangement of atoms) the total electronic density can signifi-  
cantly exceed the maximum value, for which the single-atom function ( )kinµ ρ  is determined. How to construct 

( )s
kinµ r  and ( )p

kinµ r  in this case? How to extend dependences ( )in
kinµ ρ  and ( )out

kinµ ρ  to higher den-  
sities? Probably, the exact answer to these questions will be found in some future, but now we offer other, an 
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approximate way for finding of equilibrium density and energy of interacting atoms. It seems to us that one of 
the possible practical ways is to construct analytical formulas, which can extrapolate data calculated for single 
atoms. In the best case, such formulas may be the same for some different kinds of atoms, but in the general case, 
each specie needs its own expressions for kinetic energy functionals. Calculations of equilibrium interatomic 
distances and binding energies for atomic dimers may be used for testing of constructed formulas. 

We have tested the following expressions for some s-p dimers: 

( ) ( ) ( ) ( )1 4 1 318 , 22 .s inside s outside p inside p ioutide
kin s kin s s s kin p kin p p pµ ρ µ ρ ρ ρ µ ρ µ ρ ρ ρ− − − −= = + = = +         (10) 

Calculations were performed using a cubic cell of 30 Bohr size (1 Bohr = 0.0529 nm) divided by the 100 × 
100 × 100 grid for integration. To find the binding energies Eb and equilibrium distances d0 between atoms in 
dimers we consider the total energy Etot as a sum of the electron energy Eel and the energy of “ion-ion” repulsion 

1 2

1 2

,rep
Z ZE =
−R R

                                   (11) 

where Z1 and Z2 are positive charges of ions with numbers 1 and 2 situated at R1 and R2 points. The binding energy 
per atom Eb was determined as follows: 

1 2 ,
2

tot
b

E E E
E

− −
=                                  (12) 

where Etot is the energy of two interacted atoms, E1 and E2 are energies of free atoms. 
Results of calculations were compared with results obtained in the framework of the KS-DFT approach using 

the FHI96md package. The preference was given to this package because the FHI96md package applies the same 
pseudopotentials and exchange-correlation approximations as we used.  

Figure 4 demonstrates the dependence of the binding energy (per atom) for Si2 on the distance between atoms; 
and Figure 5 shows changes of the total electron density during the iteration process for various interatomic 
distances. We can see that our results correlate with results obtained by the KS-DFT method: the both methods 
lead to similar changes of density in the process of calculation.  

Results (equilibrium distances d0 and binding energies Eb) for atomic dimers of the Na-Cl and K-Br rows are 
collected in Table 1 and Table 2, correspondingly, in comparison with results obtained by us using the FHI96md 
package. One can seen that our OF results for the most of dimers are close to the KS-DFT ones. Exceptions are 
dimers of bivalent elements (Mg, Ca) and dimers of six-seven-valence atoms (S, Cl and Se, Br); the nature of 
this peculiarity will be studied later in a special work.  

In must be noted that we have met some troubles in attempts to expanse our approach to dimers of small 
atoms (B, C, N, and O). Namely, to obtain good results for equilibrium distances and binding energies (shown  
in Table 3) we used for them different expressions for ( )s inside

kin sµ ρ− , ( )s outside
kin sµ ρ− , ( )p inside

kin pµ ρ− , and 

( )p outside
kin pµ ρ− . 

For B: 

( ) ( ) ( ) ( )2 3 2 3 2 3 2 32 13 , 13 , 2 27 , 30 .s inside s outside p inside p outside
kin s s s kin s s s kin s p p kin s p pµ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ− − − −= + = + = + = +  

For C: 

( ) ( ) ( ) ( )2 3 2 3 2 3 2 32 13 , 5 , 2 27 , 10 .s inside s outside p inside p outside
kin s s s kin s s s kin p p p kin p p pµ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ− − − −= + = + = + = +  

For N: 

( ) ( ) ( ) ( )2 3 2 3 2 3 2 32 12 , 2 , 2 25 , 5 .s inside s outside p inside p outside
kin s s s kin s s s kin s p p kin s p pµ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ− − − −= + = + = + = +  

For O: 

( ) ( ) ( ) ( )2 3 2 3 2 3 2 32 12 , 2 , 2 23 , 4 .s inside s outside p inside p outside
kin s s s kin s s s kin s p p kin s p pµ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ µ ρ ρ ρ− − − −= + = + = + = +  

Thus, we can conclude that using of special expressions for the kinetic energy functional (unique for each 
kind of atoms) allows us to describe interactions of atoms with compact densities. Note that these elements (B, 
C, N, and O) are very important components of many useful materials, molecules and compounds. 
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Figure 4. Binding energy (per atom) in the Si2 dimer versus the interatomic dis-
tance. Solid circles represent our OF results; hole circles illustrate calculations by 
the Kohn-Sham method (the FHI96md package).  

 

 
Figure 5. Changes of the total electron density in the Si2 dimer during the iteration process for various interatomic distances. 
The upper row (A, B, and C) demonstrates calculations by our method; the low row (D, E, and F) shows results of the 
FHI96md Kohn-Sham calculations. The B and E panels correspond to equilibrium distances. Dashed curves describe initial 
densities; solid ones illustrate final functions. 
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Table 1. Equilibrium distances d0 (Å) and binding energies Eb (eV, per atom) for dimers of the Na-Cl row.  

Dimer Value  Our Approach FHI96md Code 

Na2 
d 3.3 3.28  

Eb 0.1 0.08 

Mg2 
d 3.0 3.62 

Eb 0.6  0.18 

Al2 
d 2.4  2.61  

Eb 1.5 1.61  

Si2 
d 2.3  2.20 

Eb 3.2  3.25 

P2 
d 2.1  1.90 

Eb 5.4  5.04 

S2 
d 2.2  1.93 

Eb 7.3  3.41 

Cl2 
d 2.2  2.00 

Eb 9.5  1.97 

 
Table 2. Equilibrium distances d0 (Å) and binding energies Eb (eV, per atom) for dimers of the K-Br row.  

Dimer Value Our Approach FHI96md Code 

K2 
d 4.3 4.28 

Eb  0.1  0.08 

Ca2 
d  2.4 1.9 

Eb  4.00  0.08 

Ga2 
d 2.7  2.67 

Eb  1.0  0.93  

Ge2 
d  2.3  2.28 

Eb  2.6  2.36 

As2 
d 2.2  2.07 

Eb  5.0  4.12 

Se2 
d 2.2  2.18 

Eb  6.4  2.80 

Br2 
d 2.3  2.11 

Eb 7.2  3.57 

 
Table 3. Equilibrium distances d0 (Å) and binding energies Eb (eV, per atom) for dimers of B, C, N, and O.  

Dimer Value Our Approach FHI96md Code 

B2 
d  1.8 1.63 

Eb  2.1  1.88 

C2 
d  1.3 1.26 

Eb 5.1  4.82 

N2 
d 1.2  1.13 

Eb 11.7  12.56  

O2 
d 1.2  1.16 

Eb 6.3  7.30 



V. Zavodinsky, O. Gorkusha 
 

 
46 

4. Conclusion 
We have demonstrated a principal possibility to find equilibrium densities, interatomic distances, and binding 
energies in the orbital-free approach using simple functionals of kinetic energy. However, in general case, FKE 
cannot be described by any universal formula and must be constructed for the each species. This work does not 
represent the finished algorithms for modeling of polyatomic systems; we have showed only a basic possibility to 
create such code. Still, it is necessary to include in the GGA options, spin polarization, and certainly to expand it to 
d-atoms. Besides, as it is our main future task, it is necessary to add calculations of forces operating on atoms in 
order to pass from dimers to more complicated objects.  
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