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Abstract

Let Ω denote a compact convex subset of R2. Suppose that Ω
contains the origin as an inner point. Suppose that Ω is bounded
by the curve ∂Ω, parametrized by x = rΩ(θ) cos θ, y = rΩ(θ) sin θ,
where the function rΩ is continuous and piecewise C3 on [0, π/4]. For
each real R ≥ 1 we consider the dilation ΩR = {(Rx,Ry)|(x, y) ∈ Ω}
of Ω, and the set F(Ω, R) of all primitive lattice points inside ΩR.
The purpose of this paper is the study of simultaneous distribu-
tion for lengths of segments connecting the origin and primitive
lattice points of F(Ω, R). For every α, β ∈ [0, 1], consider the set
P (α, β,R) of fundamental parallelograms for Z2 of the shape t1v+t2w
with t1, t2 ∈ [0, 1], defined by points v = (|v| cos θv, |v| sin θv), w =

(|w| cos θw, |w| sin θw) ∈ F(Ω, R), such that |v|
R ≤ αrΩ(θv) and

|w|
R ≤

βrΩ(θw). We establish an asymptotic formula

#P (α, β,R)

#F(Ω, R)
= 2

∫ β

0

∫ α

0
[α′ + β′ ≥ 1]dα′dβ′ +O

(
R− 1

3 log
2
3 R

)
,

where [·] denotes the value of logical expression.
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1. Introduction

Let Ω be a compact convex domain in a plane. Using polar coordinates we

write

Ω = {(r, φ)| 0 ≤ r ≤ r(φ) ≤ 1, 0 ≤ φ ≤ φ0 ≤ π/4}, (1)

where r = r(φ) is continuous on [0, φ0]. For each real R ≥ 1 we consider

the domain ΩR consisting of points (Rx,Ry) with (x, y) ∈ Ω. Let F(Ω, R)

denote the set of primitive integer points of ΩR. We can write F(Ω, R) as

F(Ω, R) =

Aj ∈ ΩR ∩ Z2

∣∣∣∣∣∣∣∣
Aj = (xj, yj), g.c.d.(xj, yj) = 1,
θj = arctan

( yj
xj

)
,

θj+1 = arctan
( yj+1

xj+1

)
,

θj < θj+1, 1 ≤ j < N

 , (2)

where N denotes the cardinality of F(Ω, R). We say that the points Aj and

Aj+1 are consecutive points, and we say that the rays which have the vertex

at (0, 0) and pass through Aj and Aj+1 respectively are consecutive rays.

Boca F. P., Cobeli C., Zaharescu A. have investigated in [1] the distri-

bution of normalized gaps

N

2π
(θ2 − θ1), . . . ,

N

2π
(θN − θN−1) (3)

between the angles θ1 < θ2 < · · · < θN . They have obtained an exact

formula for this distribution.

A.Ustinov has noted in the paper [2] that the problem of the distribution

of values (3) can be easily solved if we know the simultaneous distribution

of lengths of segments dj, dj+1 (1 ≤ j < N), where dj =
√
x2
j + y2j . He has

established an asymptotic formula for simultaneous distribution of dj, dj+1

(1 ≤ j < N) when Ω is a triangle:

Theorem 1. Let Ω be a triangle with vertices (0, 0), (1, 0),(1, tan(φ0))

and r(φ) = 1/ cos(φ). Let

Φ(R) = Φ(R;φ0, α, β) =

=

(Aj, Aj+1) ∈ F2(Ω, R)

∣∣∣∣∣∣∣∣∣∣
Aj = (xj, yj),
dj ≤ αRr(θj),
dj+1 ≤ βRr(θj+1),
θj+1 ≤ φ0,
1 ≤ j < #F(Ω, R)

 , (4)

Nφ0(R) =

#F(Ω,R)−1∑
j=0

[θj+1 ≤ φ0]. (5)



Simultaneous distribution of primitive lattice points 3

Then for any α, β ∈ [0, 1], φ0 ∈ [0, π/4], R ≥ 2 one has

#Φ(R)

Nφ0(R)
= I(α, β) +O

(
R− 1

2 log3 R
)
as R → ∞,

where

I(α, β)=2
∫ β

0

∫ α

0

[α′ + β′ ≥ 1]dα′dβ′ =

{
0, if α+ β ≤ 1,
(α + β − 1)2, otherwise.

(6)

In the present work we consider a more general situation:

Theorem 2. Let the domain Ω be given by (1). Let r(φ) be a real function

with three continuous derivatives for φ ∈ [0, φ0]. Suppose that for φ ∈ [0, φ0]

functions

x(φ) = r(φ) cos(φ), y(φ) = r(φ) sin(φ),Ψ(φ) = x′′(φ)− 2x′(φ) tan(φ)

satisfy the following conditions:

1. x′(φ) ≤ 0, y′(φ) ≥ 0, |x′(φ)|, y′(φ) < ∞.

2. The equation Ψ(φ) = 0 has a finite number of solutions in [0, φ0].

3. There is no φ ∈ [0, φ0] such that Ψ(φ) = Ψ′(φ) = 0.

Then for any α, β ∈ [0, 1], φ0 ∈ [0, π/4],

#Φ(R)

Nφ0(R)
= I(α, β) +O

(
R− 1

3 log
2
3 R

)
as R → ∞,

where Φ(R), Nφ0(R), I(α, β) are given by (4)− (6).

Remark 1. In particular case when the equation Ψ(φ) = 0 has no solu-

tions in [0, φ0], the error term is O(R− 1
2
+ε).

In this paper we always assume that the boundary ∂Ω of Ω satisfies the

conditions of Theorem 2.

2. Formula for #Φ(R)

Statement 1. For any consecutive points Aj = (xj, yj), Aj+1 = (xj+1, yj+1)

of F(Ω, R) the point (xj + xj+1, yj + yj+1) does not lie in ΩR.

Proof. Let A = (xj + xj+1, yj + yj+1) and A′ = (
xj+xj+1

d
,
yj+yj+1

d
), where

d = g.c.d.(xj + xj+1, yj + yj+1). Suppose that A ∈ ΩR. Then A′ ∈ ΩR and

this means that A′ ∈ F(Ω, R). We observe that the point A′ lies inside the

angle generated by consecutive rays, which pass through points Aj, Aj+1.

This contradicts (2).
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Statement 2. If α and β are non-negative real numbers and α+ β < 1,

then #Φ(R) = 0.

Proof. Suppose that Φ(R) is a nonempty set. Then there is a pair Aj =

(xj, yj), Aj+1 = (xj+1, yj+1) of consecutive elements of F(Ω, R) satisfying

the relations

xj = α′Rr(θj) cos(θj) , xj+1 = β′Rr(θj+1) cos(θj+1),

yj = α′Rr(θj) sin(θj) , yj+1 = β′Rr(θj+1) sin(θj+1)

for some α′ ∈ [0, α] and β′ ∈ [0, β]. The condition α + β < 1 leads to the

conclusion that the point A = (xj + xj+1, yj + yj+1) lies below the straight

line passing through Aj and Aj+1. Therefore A ∈ ΩR. This contradicts

Statement 1.

Statement 3. For any consecutive points Aj = (xj, yj) and Aj+1 =

(xj+1, yj+1) of F(Ω, R) we have

xjyj+1 − xj+1yj = ±1.

Proof. We consider the triangle with vertices (0, 0), Aj, Aj+1. According to

Statement 1 the triangle does not contain elements of the lattice Z2. So

the parallelogram with vertices (0, 0), Aj, Aj+1, (xj + xj+1, yj + yj+1) is a

fundamental parallelogram of the lattice Z2. It is known that the area of

this parallelogram is equal to | xjyj+1−xj+1yj | and the determinant of the

lattice Z2 is equal to 1. Hence Statement 3 follows.

Lemma 1. Let

T+(R) =

 (P, P ′, Q,Q′)

∣∣∣∣∣∣
P ′Q− PQ′ = 1,
Q ≤ Q′, P ≤ Q, P ′ ≤ Q′, P ′ ≤ Q′ tan(φ0),
(Q,P ) ∈ ΩαR, (Q

′, P ′) ∈ ΩβR, (Q+Q′, P + P ′) ̸∈ ΩR

 ,

T−(R) =

 (P, P ′, Q,Q′)

∣∣∣∣∣∣
P ′Q− PQ′ = −1,
Q ≤ Q′, P ≤ Q, P ′ ≤ Q′, P ≤ Q tan(φ0),
(Q,P ) ∈ ΩβR, (Q

′, P ′) ∈ ΩαR, (Q+Q′, P + P ′) ̸∈ ΩR


be sets of 4-tuples (P, P ′, Q,Q′) ∈ Z 4. Then

#Φ(R) = #T (R) = #T−(R) + #T+(R),

where T (R) = T−(R)
∪

T+(R).
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Proof. It follows from definitions of T−(R) and T+(R) that T−(R)
∩

T+(R) =

∅.
Let Aj = (xj, yj), Aj+1 = (xj+1, yj+1) be consecutive points of F(Ω, R)

and (Aj, Aj+1) ∈ Φ(R). By (1), (2), (4) and Statement 1, Statement 3,

setting

(P, P ′, Q,Q′) =

{
(yj, yj+1, xj, xj+1), if xj ≤ xj+1,
(yj+1, yj, xj+1, xj), if xj > xj+1,

we have (P, P ′, Q,Q′) ∈ T (R). Hence #Φ(R) ≤ #T (R).

Conversely, putting

(yj, yj+1, xj, xj+1) =

{
(P, P ′, Q,Q′), if (P, P ′, Q,Q′) ∈ T+(R),
(P ′, P,Q′, Q), if (P, P ′, Q,Q′) ∈ T−(R),

we observe that Aj = (xj, yj), Aj+1 = (xj+1, yj+1) are consecutive points of

F(Ω, R) and (Aj, Aj+1) ∈ Φ(R). So #Φ(R) ≥ #T (R). The desired conclu-

sion follows.

Now we are ready to calculate #T+(R). In our context we put q = Q′,

u = P ′, v = Q. Then Lemma 1 yields the representation

#T+(R) =
∑
q<R

q∑
u,v=1

δq(uv − 1), (7)

where

u ≤ q tan(φ0), (q, u) ∈ ΩβR, (vq, uv−1) ∈ ΩαqR, (q(q+v), u(q+v)−1) ̸∈ ΩqR.

Here

δq(uv − 1) =

{
1, if q|(uv − 1),
0, otherwise

is the indicator function of divisibility by q.

The domain {(u, v)|(vq, uv − 1) ∈ ΩαqR, (q(q + v), u(q + v)− 1) ̸∈ ΩqR}
is bounded by curves

{(u, f1(u))} = {(u, v)|v = αRx(t), u = q tan(t) +
1

αRx(t)
, t ∈ [0, φ0]},

{(u, f2(u))} = {(u, v)|v = Rx(t)− q, u = q tan(t) +
1

Rx(t)
, t ∈ [0, φ0]},

so (7) may be expressed as

#T+(R) =
∑
q<R

∑
u∈(0,q tan(φ0)]

(q,u)∈ΩβR

∑
f2(u)<v≤min{q,f1(u)}

δq(uv − 1).
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We replace the functions f1(u), f2(u) by functions g1(u, α), g2(u), which we

define by

{(u, g1(u, α))} = {(u, v)|v = αRx(t), u = q tan(t), t ∈ [0, φ0]}, (8)

{(u, g2(u))} = {(u, v)|v = Rx(t)− q, u = q tan(t), t ∈ [0, φ0]}. (9)

This replacing gives the error term O(1). Define

S(R,α, β) =
∑
q<R

∑
u∈I(q,β)

∑
g2(u)<v≤min{q,g1(u,α)}

δq(uv − 1), (10)

I(q, β) = {u ∈ (0, q]|(q, u) ∈ ΩβR, u ≤ q tan(φ0)}.

Then it is clear that

#T+(R) = S(R,α, β) +O(1). (11)

We need the following estimates concerning the number of solutions

of congruence uv ≡ 1( mod q) in the domain {(u, v)|u ∈ (X1, X2], v ∈
(0, f(u)]}, obtained by A. Ustinov [3]:

Lemma 2. Let X1, X2, Y be a real non-negative numbers, which do not

exceed q. Then∑
u∈(X1,X2]

∑
v∈(0,Y ]

δq(uv ± 1) =
Y

q

∑
u∈(X1,X2]
(q,u)=1

1 +O(R1[q]),

where

R1[q] ≪ σ(q) log2(q + 1)
√
q.

Here σ(q) is the number of divisors of q.

Lemma 3. Let f(x) be a non-negative real function two times differen-

tiable for [X1, X2] (0 ≤ X1, X2 ≤ q), whose derivatives satisfy the condition

1

A
≪ |f ′′(x)| ≪ w

A

for some constants A > 0, w ≥ 1. Then the asymptotic formula∑
u∈(X1,X2]

∑
0<v≤f(u)

δq(uv ± 1) =
1

q

∑
u∈(X1,X2]
g.c.d.(q,u)=1

f(u) +O(R2[q, A,X2 −X1]),

is valid. Here

R2[q, A,X] ≪w σ
2
3 (q)XA− 1

3 +Xε(
√
A+

√
q).
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Now we turn to (10). We write S(R,α, β) as

S(R,α, β) = S ′
1(R,α, β) + S ′′

1 (R,α, β)− S2(R,α, β), (12)

where

S ′
1(R,α, β) =

∑
q≤R

∑
u∈I′(q,α,β)

∑
v≤q

δq(uv − 1),

S ′′
1 (R,α, β) =

∑
q≤R

∑
u∈I′′(q,α,β)

∑
v≤g1(u,α)

δq(uv − 1),

S2(R,α, β) =
∑
q≤R

∑
u∈I(q,β)

∑
v≤g2(u)

δq(uv − 1).

Here intervals I ′(q, α, β), I ′′(q, α, β) are defined by

I ′(q, α, β) = {u ∈ I(q, β)|g2(u) < q ≤ g1(u, α)},
I ′′(q, α, β) = {u ∈ I(q, β)|g2(u) < g1(u, α) ≤ q}.

According to Lemma 2 and the bound
∑

q<R σ(q) ≪ R logR, we have

S ′
1(R,α, β) =

∑
q<R

1

q

∑
u∈I′(q,α,β)
g.c.d.(q,u)=1

q +O
(
R

3
2 log3R

)
. (13)

To estimate two other sums S ′′
1 (R,α, β) and S2(R,α, β) we must consider

the fact that for fixed natural q the second derivatives of g1(u, α) and g2(u)

lie within closed intervals containing zero.

Lemma 4. For S ′′
1 (R,α, β) and S2(R,α, β) it follows that

S ′′
1 (R,α, β) =

∑
q<R

1

q

∑
u∈I′′(q,α,β)
g.c.d.(q,u)=1

g1(u, α) +O
(
R2− 1

3 log
2
3 R

)
, R → ∞,

S2(R,α, β) =
∑
q<R

1

q

∑
u∈I(q,β)

g.c.d.(q,u)=1

g2(u, α) +O
(
R2− 1

3 log
2
3 R

)
, R → ∞.

Proof. We will prove the lemma for S ′′
1 (R,α, β) only as we can easily adapt

the proof below for the sum S2(R,α, β). By (8) we conclude that

g′′1(u, α) =
αR

q2
cos4(t)Ψ(t), t = arctan

(u
q

)
,

where the function Ψ(t) is defined in Theorem 2. This function vanishes at

a finite number of points. Without loss of generality we suppose that the
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equation Ψ(t) = 0 has only one solution which we denote by t0. We denote

the corresponding value of the variable u by u0.

If t0 /∈ (0, φ0], application of Lemma 2 (with A = q2

R
) to inner sums over

u, v of the sum S ′′
1 (R,α, β) gives

S ′′
1 (R,α, β) =

∑
q<R

1

q

∑
u∈I′′(q,α,β)

(q,u)=1

g1(u, α) +O
(
R

3
2
+ε
)
, (14)

since ∑
q<R

R2

[
q,

q2

R
, q

]
≪ R

3
2
+ε.

For this case Lemma 4 is proved.

Let t0 ∈ (0, φ0]. Put

umax = max
u∈I′′(q,α,β)

{u}, k = [log2(umax)],

S(q, J) =
∑

u∈J∩I′′(q,α,β)

∑
v≤g1(u,α)

δq(uv − 1),

where J is the interval.

Let ∆ ∈ (0, 1) be a real number to be specified later. We divide the

interval (0, umax] into subintervals J (0), Ji (1 ≤ i ≤ k + 1) :

J (0) = (u0 −∆q, u0 +∆q]
∩

I ′′(q, α, β),

Ji =

{
(2i−1, 2i]

∩
I ′′(q, α, β), if J (0) = ∅,

(2i−1, 2i]
∩

I ′′(q, α, β)\(J (0)
∩
(2i−1, 2i]), otherwise

(some of these intervals may be empty). For the above reasons we write the

sum S ′′
1 (R,α, β) as

S ′′
1 (R,α, β) =

∑
q<R

∑
1≤i≤k+1

S(q, Ji) +
∑
q<R

S(q, J (0)).

The set {Ji}k+1
i=1 has subintervals for which intersections with J (0) are non-

empty. We denote these ones as J (1), J (2). We apply Lemma 2 to S(q, J (0)),

replacing g1(u, α) with the constant g1(u0 − ∆q, α). As | g′1(u, α) |≪ R
q
.

Then this replacing gives the error term O(R∆2). To other sums we apply

Lemma 3 with

A =
q2

R
·
{

∆−1 — for J (1), J (2),
q · 2−i — for Ji, not coinciding with J (1), J (2).

We obtain

S ′′
1 (R,α, β) =

∑
q<R

1

q

∑
u∈I′′(q,α,β)
g.c.d.(q,u)=1

g1(u, α) +O(R′′),
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where

R′′ = R′′
1 +R′′

2, (15)

R′′
1 ≪

∑
q<R

R1[q] +
∑
q<R

R∆2, (16)

R′′
2 ≪

∑
q<R

∑
i<log q

R2

[
q,

q3

R · 2i
, 2i

]
+
∑
q<R

R2

[
q,

q2

R∆
,∆

]
. (17)

The sums on the right of (16) may be estimated by R
3
2 log3R and R2∆2

respectively. Using Lemma 3 we represent the sum in the right hand side of

(17) as a sum of three terms Σ1, Σ2, Σ3 :

Σ1 =
∑
q<R

∑
j<log q

σ
2
3 (q)2j

(
R · 2j

q3

) 1
3

+
∑
q<R

σ
2
3 (q)∆

(
R∆

q2

) 1
3

,

Σ2 =
∑
q<R

∑
j<log q

2εj
√

q3

R · 2j
+
∑
q<R

∆ε

√
q2

R∆
,

Σ3 =
∑
q<R

∑
j<log q

2εj
√
q +

∑
q<R

∆ε√q.

In Σ1 we see that the first term dominates, so we may omit the second

term. Therefore

Σ1 ≪ R
1
3

∑
q<R

σ
2
3 (q)q−1

∑
j<log q

2
4
3
j ≪ R

1
3

∑
q<R

σ
2
3 (q)q

1
3 ≪ R

1
3

(∑
q<R

σ(q)

) 2
3
(∑

q<R

q

) 1
3

≪

≪ R1+ 2
3 log

2
3 R.

Also in Σ2 the second term may be omitted and in the first term the sum

over q, j is restricted to pairs with q3

R·2j ≥ 1. In all intervals Jj (1 ≤ j ≤ k+1)

we have g′′(u) ≫ R·∆
q2

, then R·2j
q3

≫ R·∆
q2

. So

Σ2 ≪
∑
q<R

∑
j<log q

2εj
√

q3

R · 2j
≪

∑
q<R

∑
j<log q

2εj
√

q2

R ·∆
≪ R− 1

2∆− 1
2

∑
q<R

q1+ε ≪ R
3
2
+ε∆− 1

2 .

As Σ3 ≪ R
3
2
+ε we have R′′

2 ≪ R1+ 2
3 log

2
3 R + R

3
2
+ε∆− 1

2 . From (15) we get

an estimate of the error term for S ′′
1 (R,α, β) :

R′′ ≪ R
3
2 log3 R +R2∆2 +R1+ 2

3 log
2
3 R +R

3
2
+ε∆− 1

2 .

Now we have to choose the parameter ∆ in such a way that R2∆2 ≍
R

3
2
+ε∆− 1

2 . Then we get ∆ = R− 1−2ε
5 . This gives the result of Lemma 4

for S ′′
1 (R,α, β).
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Let F (u, q, α) denote the function F (u, q, α) = min{q, g1(u, α)} − g2(u).

The relations (12), (13) and Lemma (4) give

S(R,α, β) =
∑
q<R

1

q

∑
u∈I(q,β)

g.c.d.(q,u)=1

F (u, q, α) +O
(
R2− 1

3 log
2
3 R

)
. (18)

By (8) and (9) we have

1

q

∑
u∈I(q,β)

g.c.d.(q,u)=1

F (u, q, α) =
1

q

∑
δ|q

µ(δ)
∑

u∈I(q,β)
δ|u

F (u, q, α).

From the identity∑
u∈I(q,β)

δ|u

F (u, q, α) =
1

δ

∫ q

0

[u ∈ I(q, β)]F (u, q, α)du+O(q)

and relations (8), (9) we have∫ q

0

[u ∈ I(q, β)]F (u, q, α)du = q2
∫ 1

0

∫ 1

0

[
t ≤ tq, t ≤ φ0,

R

q
x(t)−1 < v ≤ α

R

q
x(t)

]
dvd tan(t),

where the value tq is given by q = βRx(tq). Now the main term in (18),

which we denote as S∗(R,α, β), can be written in the form

S∗(R,α, β) =
∑
δ<R

µ(δ)S ′
(
R

δ

)
, (19)

where

S ′(R) =
∑
q<R

q

∫ 1

0

∫ 1

0

[
t ≤ tq, t ≤ φ0,

R

q
x(t)− 1 < v ≤ α

R

q
x(t)

]
dvd tan(t).

Here we take into account that the remainder
∑

q<R
1
q

∑
δ|q q ≪ R logR is

less than the error term in (18).

To evaluate S ′(R) we change the order of the summation and the inte-

gration, then we replace the sum with the integral, taking into account that

the error term is of order R. Thus we have

S ′(R) = R21

2

∫ φ0

0

x2(t)d tan(t)

∫ 1

0

[
1

β
− 1 < v <

α

1− α

](
min

{
α2

v2
, β2

}
− 1

(v + 1)2

)
dv +

+O(R).

Applying Statement 2, we obtain S ′(R) = R2SΩ · I(α, β) + O(R), where

I(α, β) is defined by the formula

I(α, β) = [α + β ≥ 1] · [β ≥ 1/2] ·


(α + β − 1)2, if α ≤ 1/2,
2(β − 1/2)2 − (α− β)2, if 1/2 < α ≤ β,
2(β − 1/2)2, if α > β
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and SΩ denotes the area of the domain Ω. Combining the above result with

(10),(11), (18), (19) we get an asymptotic formula for #T+(R) :

#T+(R) =
R2

ζ(2)
SΩ · I(α, β) +O

(
R2− 1

3 log
2
3 R

)
.

To prove the asymptotic formula for #T−(R), we proceed similarly to

(7). We deduce

#T−(R) =
∑
q<R

q∑
u,v=1

δq(uv + 1),

where

u ≤ q tan(φ0)−1/v, (q, u) ∈ ΩαR, (vq, uv−1) ∈ ΩβqR, (q(q+v), u(q+v)−1) ̸∈ ΩqR.

According to (8)-(11) we have T−(R) = S(R, β, α) +O(R). Then

#T−(R) =
R2

ζ(2)
SΩ · I(β, α) +O

(
R2− 1

3 log
2
3 R

)
.

At last we note, that I(α, β) + I(β, α) = I(α, β); and by Lemma 1 for

#Φ(R) we obtain the asymptotics

#Φ(R) =
R2

ζ(2)
SΩ · I(α, β) +O

(
R2− 1

3 log
2
3 R

)
. (20)

3. Proof of Theorem 2

Theorem 2 follows from (20) and the asymptotic formula for #F(Ω, R) :

#F(Ω, R) =
∑

(x,y)∈F (Ω,R)
g.c.d.(x,y)=1

1 =
∑

(x,y)∈F (Ω,R)

∑
δ|g.c.d.(x,y)

µ(δ) =
∑
δ<R

µ(δ)
∑

(x,y)∈F (Ω,R/δ)

1 =

= R2 · SΩ

∑
δ<R

µ(δ)

δ2
+O(R log(R)) =

R2

ζ(2)
· SΩ +O(R log(R)).
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