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Abstract: A practical way to simulate multi-atomic systems without using of wave functions (orbitals) is proposed. Kinetic 
functionals for each type of atoms are constructed and then are used for complex systems. On examples of clusters containing 
Al, Si, C, and O it is shown that this method can describe structures and energies of multi-atomic systems not worse than the 
Kohn-Sham method but faster. Besides, it is demonstrated that the orbital-free version of the density functional theory may be 
used for finding equilibrium configurations of multi-atomic systems with covalent bonding. The equilibrium interatomic 
distances, interbonding angles and binding energies for Si3 and C3 clusters are found in good accordance with known data. 
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1. Introduction 

The orbital-free (OF) approach is an alternative to the 
Kohn-Sham (KS) [1] method to simulate multi-atomic 
systems in the framework of the density functional theory 
(DFT) [2]. The OF approach operates with the electron 
density only (without wave functions) and being developed 
enough can be applied for simulation of very large systems: 
up to millions atoms [3]. Several groups [3-11] are working 
in this area with different success, and the calculation of the 
kinetic energy is noted as a main problem. In the previous 
papers [12, 13] it was suggested that there is no universal 
way to describe the kinetic energy of different atoms and 

compounds. In the present work it is described how it is 
possible to extend this approach to systems with more large 
systems. 

2. A General Description of the of 
Approach 

As it is known the DFT claims that the energy E of the 
ground state of any quantum system can be found by 
minimization of the some functional depending only on the 
electronic density of this system ρ(r): 
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the electrostatic electron potential Hartree, εex-c and εkin are 
exchange-correlation and kinetic energies (per electron). 

Minimization of (1) means solution the following 
equation: 
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with the condition ∫ N=)dρ( rr  where N is the number 

of electrons in the system, and µ
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ex− c
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δε ex− c( ρ)
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There are some realistic approximations for exchange-
correlation potential µex− c ( ρ)  there; the potential Hartree 

( )φ r  may be calculated using Fourier transformations or 

Poisson equations; the external potential V( )r  usually 

consists of atomic potentials. The only real problem is the 
kinetic potential µkin. 

Pseudopotential Approach for Dimers 

In practice, the DFT calculations are simpler if one uses 
pseudopotentials instead of full electron potentials. Therefore 
let us rewrite the above equations in the pseudopotential 
approach, and, for simplicity, let us limit yourself by two-
atomic systems and s- and p-components of pseudopotentials. 

We present the total density 12ρ as a sum of partial 

densities: 
ps −− += 121212 ρρρ . 

The electron energy of this system 

∫ −−= rdE ps ),( 12121212 ρρε  must be minimal with the 

condition ( ) 121212 Ndps =+∫ −− rρρ , where 12ε  is the 

electron energy per electron for the two-atomic system with 
the total number of electrons N12. In the other words we have 
to find the density ρ12 that satisfies the system of two 
equations: 
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Thus we may write: 
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where где )(V s r−1 , )(V s r−2 , )(V p r−1 , and )(V p r−2  are 

s and p components of pseudopotentials of the first and 

second atoms, )( r12ϕ  and )1212 (ρcex−µ  are the electrostatic 

and exchange-correlation potentials calculated for the total 

electron density 12ρ  of a dimer, )1212 s

kin

s(ρµ −− and 

)1212 p

kin

p(ρµ −−  are partial kinetic potentials depending on 

corresponding partial densities ρ12-s and ρ12-p. 

It is useful to present µ12− s
kin

( ρ12− s) and 

µ12− p
kin

( ρ12− p )  in the form of 
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kin
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kin
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kin

( ρ12− p )= µ12+ ∆µ12− p
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( ρ12− p )  and rewrite Eqs. 
(4-s), (4-p) for a two-atomic system as it follows below: 
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The electron energy )1212(ρε  contains terms of electrostatic energy 

2
1 12 2 12 1 12 2 12 12 12

1
4

2
estat s s s s p p p pV ( ) V ( ) V ( ) +V ( ) ( ) b acε ρ ρ ρ ρ φ ρ− − − − − − − −= + + + −r r r r r , exchange-correlation 12 12 )ex c(ρε −  and 

kinetic energies 12 12 12 12 12 12) ) )kin kin kin
s s p p(ρ (ρ (ρε ε ε− − − −= + . 

Namely: 
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Obviously, for two isolated atoms it possible to write 
equations similar to (7) and (8): 
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From which it is followed: 

)(ρµ)(ρµ)()(V a

s

kin

s

acexa

s −−
−

− −−−= 111111 rr ϕ   (14) 

)(ρµ)(ρµ)()(V a

p

kin

p

acexa

p −−
−

− −−−= 111111 rr ϕ   (15) 

)(ρµ)(ρµ)()(V a

s

kin

s

acexa

s −−
−

− −−−= 222222 rr ϕ   (16) 

)(ρµ)(ρµ(r))(V a

p

kin

p

acexa

p −−
−

− −−−= 222222 ϕr   (17) 
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Now equations (5-s) and (5-p) can be transformed to 
simple forms: 
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It is possible to solve these equations using some probe 

functions for 1212-s

kin

s
(ρ )µ −∆ , )(ρ p

kin

−∆ 12p-12µ , 1

kin a

1 s s
∆µ (ρ )− − , 

∆µ1p
kin

( ρ1− p
a

) , ∆µ2− s
kin

( ρ2− s
a

) , 
∆µ2− p

kin
( ρ2− p

a
)

 and 
then to calculate the total energy with 12

kin kin

s 12 12 s
µ = µ + ∆µ− −  
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p1212
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p ∆µ+µ=µ −−12 . The probe functions must lead 

to the equilibrium interatomic distances and binding energy 
for dimers. 

The binding energy for a dimer (per one atom) would be 
calculated as follows: 

E
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Dimers with identical atoms 

Al, Si, and C were taken as test elements. The FHI98pp 
[14] package was used as a generator of pseudo-potentials 
and equilibrium partial electron densities. Exchange and 
correlation potentials were calculated in the local density 
approach [15, 16]. Studied atoms were located in a cubic cell 
of the L size (L=30 a.u.; 1 a.u. = 0.529 Å). The cell was 
divided on 150×150×150 elementary sub-cells for the 
integration with the step ∆L of 0.406 a.u. Results of 
calculations were compared with published data. 

The same types of kinetic functions kin

s∆µ  and 
kin

p∆µ  

for isolated atoms and dimers and trimers were used, 
however they were found different for different types of 
atoms. 

Obviously functions )(ρ s

kin

−∆ 12s-12µ  must go to zero when 

the interatomic distance increases. Let our dimmer consists 

from atoms of an A type. Let us find )(ρ s

kin

−∆ 12s-12µ  and

)(ρ p

kin

−∆ 12p-12µ  in the following form: 
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where )s-A (ρkinν  and )p-A (ρkinν  are unknown functions of 

density, which must make the dimer binding energy and the 
equilibrium distance close to results of Kohn-Sham 
calculations. 

Namely, for Al they are: 

1/ 41.2 0.3kin

s s sν ρ ρ= − , 1/ 41.2 0.3kin

p p pν ρ ρ= − ; 

for Si: 

1 41.4 4.4kin

s s sν ρ ρ= + , 1 41.62 4.4kin

p p pν ρ ρ= + ; 

and for C: 

1 41.9 0.6kin

s s sν ρ ρ= + , 1 42.0 0.6kin

p p pν ρ ρ= + . 

Calculated values of interatomic distances and binding 
energies for the Al2, Si2, and C2 dimers are collected in Table 
1 in comparison with known published data. It is clear that 
agreement is rather good. 

Table 1. Equilibrium distances d and binding energies Eb (absolute values, 

per atom) for Si2, Al2 and C2 in comparison with known calculated data. 

Dimer Source of data d, Å Eb, eV 

Si2 

OF method 2.22 2.6 

Other calculations 
2.23 [18] 
2.21 [19] 

1.97 [18] 
1.599 [19] 

 KS 2.23 2,4 
 Experiment 2.24 [32] 1.6 [32] 

Al2 

OF method 2.35 1.1 

Other calculations 
2.46 [20] 
2.95 [22] 

1.0 [21] 
1.23 [22] 

 KS 2.51 0.92 
 Experiment 2.56 [31] 0.78 [31] 

 
С2 

OF method 1.32 5.0 

Other calculations 
1.247-1.367 [23] 

1.316 [24] 
4.7 [23] 

3.5 [24] 
 KS 1.23 4.8 
 Experiment 1.24 [33] 3.1 [33] 

Notation: “KS” means the calculations used the FHI96md package [17] 
based on the Kohn-Sham method. 

Dimers with different atoms 

As different atoms have different functions for kinetic 
energy, some procedure to calculate the total kinetic 

functions kin

12∆µ  in the space of the atomic system has to be 

developed. Near each atom it has to be approximately equal 
to its atomic function, but it has to be equal to mixture of the 
specific atomic functions between atoms. It seems that the 

simple way to construct this total function kin

12∆µ  is to 

summarize the specific atomic functions with some weights: 
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1 2 2( ) ( ) ( )kin kin kin
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The weights have to be determined through gauss 
functions those are fitted to atomic densities: 
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An example of fitting of densities is demonstrated, Figure 
1 the fitting of atomic densities for silicon and oxygen. Value 
A and B for Si, Al, C and O are collected in Table 2. 

 

Figure 1. The s-densities and the weights Ws for oxygen (dash) and silicon 

(solid) atoms. 

Table 2. Value A and B for Si, Al, C and O. 

Specie As Ap Bs Bp 

Si 0.065 0.040 3.5 4.5 

Al 0.045 0.009 4.0 7.5 

С 0.200 0.160 1.5 1.5 

O 0.300 0.450 1.0 1.5 

Calculations for the SiC, SiAl, AlC, SiO, CO, and AlO 
dimers were fulfilled with parameters shown in Table 2. The 

kinetic functions for oxygen ( 1/ 40.5kin
s s

ν ρ= ; 
1/ 40.6kin

p p
ν ρ= ) 

were constructed through simulation of the SiO dimer. 
Because of the high values of the electron density, the 
200×200×200 grid was used for the cell integration for 
dimers contained oxygen. Results of calculations are 
presented in Table 3. 

 

Table 3. Equilibrium distances d and energies of dissociation Ed (absolute 

values) for SiC, SiAl, AlC, SiO, CO, and AlO in comparison with other data. 

Dimer Source of data d, Å Ed, eV 

SiC 
OF method 1.75 6.2 
KS 1.69 6.66 

SiAl 
OF method 2.35 3.3 
KS 2.30 3.10 

AlC 
OF method 1.93 4.0 
KS 1.83 4.32 

SiO 
OF method 1.55 15.4 
KS 1.48 13.2 

CO 
OF method 1.0 17.5 
KS 1.15 18.6 

AlO 
Our method 1.7 8.5 
KS 1.55 9.0 

Notation: “KS” means the calculations used the FHI96md package [17 based 
on the Kohn-Sham method. 

It is clear from Table 3 that our calculated values for Si-C, 
Si-Al, Al-C, Si-O, C-O and Al-O are very close to KS-DFT 
results. 

Interbonding angles 

To describe the angle depending of interatomic bonding it 
is useful to analyze the reasons of this depending in the 
standard quantum-mechanical approach, which uses wave 
functions and electronic states. As it is specified in the work 
[25] the angle peculiarities of the cluster Si3 are defined by 
the Yang-Teller effect caused by existence of the energy gap 
between occupied and empty states. In other words, the 
difference of structures of semiconductor and metal small 
clusters is connected with the difference of their bond wave 
functions: namely, covalent atoms have localized functions 
orientated between nearest atoms, while metallic atoms have 
dispersed functions without orientation in the space. 

In the orbital-free case wave functions are absent, 
electronic states are absent too, and, therefore, one cannot 
speak about any energy gap. In the OF approach there is only 
the electronic density which defines all energy and structure 
of the polyatomic system. However the main quantum-
mechanical rules remain fair and in this case. Besides the 
Schrödinger's (or Kohn-Sham) equations out of which wave 
functions and electron states are brought, there is the Paulie's 
principle specifying that in one quantum state there can be 
only two electrons (without taking into account a spin). In the 
OF case this principle may be paraphrased by the following 
way: a covalent bond is formed by two electrons, the 
common wave function of which is localized in the space 
between two nearest atoms. It is obvious that the quantity of 
the electrons which are responsible for this bond doesn't 
change as the distance between atoms changes (if, of course, 
the bond isn't broken at all and the electronic structure isn't 
reconstructed completely). In case of metals the conduction 
states are close each other and electrons can easily "flow" 
from one state to another during the changing of the atomic 
geometry. 

Talking about covalent bonding in the language of the 
electronic density one obliges to base on the results of wave 
functions calculations. The main result of such calculations is 
that an atomic system with saturated covalent bonds (having 
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two electrons in each bond) has extremely clear energy gap 
between occupied and empty states. 

Let us consider some multi-atomic system which density 
has local maximums ρij between the nearest neighbors i,j. Let 
a part of these maximums overcome the value of ρ0 in some 
etalon system (for example, in dimer or trimer). Then the 

excess of energy appears: 
20

,
1

( / 1)
2

i j

i j

E C ρ ρ
≠

∆ = −∑ , where 

C is an unknown coefficient. 
The density between the nearest atoms may be changed by 

two ways: 1) changing the interatomic distance; 2) changing 
the interbonding angle. The first way is caused by quantum 
forces calculated from interatomic interactions described 
above. The second way may be characterized by some 
additional, so called Paulie forces. 

The electronic density of the trimer ρtrim may be found as 
follows: 
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where RA, RB, and RC are coordinates of points in which the 
A, B, and C atoms with densities ρat are situated. The binding 
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ZA and ZB are the positive charges of atomic cores equal to 
absolute values to charges of valence electrons.

 

 

Figure 2. Dependence of the energy of the Si3 cluster on the angle between 

bonds. 

Figure 2 presents dependence of the energy of the Si3 
cluster on the angle between bonds. It demonstrates a 
minimum at the angle of 78º. For C3 a minimum was found at 
180º (a linear chain), and for Al3 (where covalent bonds 
absent) all angles were found of 60º (an equilateral triangle). 

Equilibrium values of interatomic distances, angles α, and 
binding energies for the trimers Al3, Si3, and C3 are collected 
in Table 4 in comparison with known data and results of 
Kohn-Sham calculations. Parameter C of 25000 was used for 
silicon and carbon clusters; for aluminum C was equal zero. 

 

Table 4. Equilibrium distances d, angles α and binding energies Eb (absolute 

values, per atom) for Si3, Al3 and C3 in comparison with known calculated 

data. 

Trimer Source of data α, deg d, Å Eb, eV 

Si3 

OF method 78 2.27 2.8 

Other calculations 
77.8 [18] 
78.10 [26] 
79.6[28] 

2.26 [19] 
2.177 
[26] 

2.51 [19] 
2.93 [27] 

KS 79 2.17 3.48 

Al3 

OF method 60 2.5 1.6 

Other calculations 
60 [22] 
60[29] 

2.50 [22] 
2.55 [29] 

1.96 [22] 
1.74 [21] 

KS 60 2.48 1.69 

С3 

OF method 180 1.27 5.9 

Other calculations 
180 [30] 
180 [23] 

1.29 [30] 
1.3 [23] 

6.8 [30] 
5.0 [24] 

KS 180 1.25 6.78 

Notations: “KS” means the calculations used the FHI96md package [17] 
based on the Kohn-Sham method. 

To experience the OF approach for ability to describe 
correctly three-dimensional systems we investigated four-
atomic clusters Si4, Al4 and С4 with structures of straight 
lines, rhombuses, and trigonal pyramids. It is known that the 
Si4 cluster is built in the form of a rhombus [18, 19]; and 
four carbon atoms form a straight linear chain [23, 24]. As 
for aluminum, there is no consensus [21, 22, 31]. Some 
authors claim that the most favorable configuration is 
rhombus, others favor pyramid. What gives our method? 

Our Calculations show that for the four-atomic cluster the 
most favorable configuration is the linear chain with the 
interatomic distance of 1.27 Å and the binding energy of 6.3 
eV per atom. The Kohn-Sham results are 1.30 Å and 6.76 eV. 

It had been found that the rhombus configuration is 
favorable for the Si4 cluster with the interatomic distance of 
2.35 Å and the binding energy of 2.7 eV (the gain is 0.7 eV 
in comparison with a pyramid). The Kohn-Sham results are 
2.32 Å and 4.1 eV (the gain is 0.6 eV). 

In the Al case our calculations demonstrate benefit of the 
pyramid; however the difference with the rhombic 
configuration is only 0.2 eV per atom. The Kohn-Sham 
method yields the opposite results: 0.13 eV in favor of a 
rhombus. 

3. Conclusions 

The basic principles of modeling of atomic interactions 
within of an orbital-free version of the density functional 
theory were formulated; and modeling of some clusters was 
carried out. The possibility to simulate interactions of atoms 
of non-identical types in the framework of the orbital-free 
version of the density functional theory it is shown. A rather 
simple technique was used for this purpose, namely: first, the 
atomic kinetic functions were found for homo-atomic dimers 
Si2, Al2, C2 and for the SiO dimer; second, some atomic 
weights were proposed using gaussians associated with 
atomic densities; third, kinetic functions for hetero-atomic 
dimers were constructed. Equilibrium interatomic distances 
and dissociation energies for the SiC, SiAl, AlC, SiO and CO 



194 Victor Zavodinsky and Olga Gorkusha:  New Orbital Free Simulation Method Based on the Density Functional Theory  
 

dimers were found in good comparison with other data. 
Restriction principle for the interatomic density (following 

from Paulie's principle) allows us to describe angular 
dependences of the interatomic bonding in polyatomic 
clusters. In particular, it had been shown that for the Al3 
cluster the equilateral triangle is favorable; the Si3 trimer is 
characterized by the isosceles triangle with angles of 80 and 
50 degrees, and three atoms of carbon built the linear chain. 
Calculated equilibrium interatomic distances and the values 
of binding energy are well compared with known data. 

As calculation of kinetic energy and interbonding angles 
are key points in modeling of polyatomic systems in the 
orbital-free approach, it is possible to consider that this work 
opens a direct way to design an effective method of modeling 
of complicated nanosystems and supermolecules with a high 
number of atoms. 
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