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Two Famous Formulas (Part I)

V. Vavilov and A. Ustinov

In this article, we will discuss Pick’s formula for calculating the area of a lattice
polygon (Part I) and Euler’s formula for polyhedra (Part II), paying particular
attention to the connection between these two formulas.

Before we proceed, let us define some terms. A lattice Z2 is the set of all points of
the cartesian plane with integer coordinates. It is convenient to imagine a lattice as
an infinite sheet of graph paper. A lattice polygon is a polygon with all its vertices
on grid points. Unless otherwise specified, we consider only simple polygons, that is
polygons that do not intersect themselves. Figure 1 shows examples of non-simple
polygons.

Figure 1 Figure 2

First of all, let us consider the smallest (and the most important) case. Suppose
our lattice polygon is a triangle with no lattice points except its vertices or other
lattice points on its perimeter. Such triangles are called primitive and example
are depicted in Figure 2.

We will study their properties, beginning by showing that any triangle can be
divided into primitive triangles. First, suppose that triangle ABC has no interior
lattice points, but has some on at least one of its sides, say BC. Let us connect
the vertex A with all lattice points on the side BC as in Figure 3. All the resulting
triangles, except possibly ABP and AQC, are primitive. As for triangles ABP
and AQC, they each have two sides that do not contain lattice points. Connecting
points P and Q with lattice points on the sides AB and AC, we divide triangles
ABP and AQC into primitive triangles.

Now suppose that the given triangle ABC has interior lattice points. Pick an
arbitrary interior lattice point and connect it to the vertices A,B and C (see
Figure 4). The three resulting triangles contain fewer interior lattice points than
ABC. Since there are finitely many lattice points on the interior of ABC, by
repeating this process, we will divide triangle ABC into triangles with no interior
lattice points. To finish the decomposition into primitive triangles, we can apply
the previously described process to eliminate lattice points on the sides of the
resulting triangles.
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Figure 3 Figure 4

Theorem 1 A triangle is primitive if and only if it has area of 1/2.

Proof. Let ABC be a primitive triangle. Consider the smallest lattice rectangle
that contains ABC and has sides parallel to the coordinate axes. Because the
rectangle is minimal, each of its four sides must pass through a vertex of the
triangle, whence the pigeon-hole principle forces the rectangle to share at least
one vertex with the triangle. Moreover, unless a side of the triangle is a diagonal
of the rectangle, the triangle will necessarily contain a lattice point (as indicated
by lattice point K in cases a) and b) of Figure 5, contrary to the assumption that
it is primitive. We may therefore assume that AB is a diagonal of the rectangle
OAFB as shown in cases c) and d). Drop perpendiculars CD and CE to OA and
OB, respectively (where C might coincide with D,E, or O).

Figure 5

Suppose that the point O from Figure 5d is the origin and let D = (p, 0), A =
(q, 0), E = (0, r) and B = (0, s). Let I(P ) denote the number of lattice points that
lie inside a polygon P but not on its sides. Then

I(OAFB) = (q − 1)(s− 1).

Since AB does not contain lattice points other than A and B, we have

I(OAB) = I(OAFB)/2 = (q − 1)(s− 1)/2.

Similarly,

I(ACD) = (q − p− 1)(r − 1)/2 and I(CBE) = (s− r − 1)(p− 1)/2.
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Since triangle ABC contains no interior lattice points, therefore

I(OAB)− I(ACD)− I(CBE) = pr,

the number of lattice points inside and on rectangle ODCE, excluding those on
OD and OE. It follows that

(q − 1)(s− 1)− (q − p− 1)(r − 1)− (s− r − 1)(p− 1) = 2pr,

and so
qs− ps− qr = 1.

Letting square brackets denote the area of the region enclosed by the indicated
polygon, it follows that

[ABC] = [OAB]− [ACD]− [CBE]− [ODCE]

=
sq

2
− (p− q)r

2
− (s− r)p

2
− pr

=
qs− ps− qr

2

=
1

2
,

which proves one direction of the theorem.

Conversely, the area of a lattice triangle that is not primitive must exceed 1/2
because (as we have already seen) it can be divided into primitive triangles, each
of which has an area of 1/2 by the first part of the theorem. 2

Exercise 1. Prove that for any arbitrarily large number M , there exists a primi-
tive lattice triangle such that each of its sides is larger than M .

Theorem 2 (G. Pick) For any simple lattice polygon P , we have the following
formula

[P ] = Ni +
Ne
2
− 1,

where Ni is the number of interior lattice points of P and Ne is the number of
lattice points on the boundary of P .

For example, in Figure 6 we have Ni = 9, Ne = 11 and so [P ] = 9 + 11
2 − 1 = 27

2 .

Figure 6
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Proof. Assume that P is a simple polygon with k vertices. First of all, note that
every simple polygon with four or more vertices has at least one diagonal that
lies in its interior. This follows by definition for convex polygons; on the other
hand, if the interior angle at some vertex is greater than 180◦, then a ray from
that vertex sweeping the interior of the polygon must strike another vertex, and
these two vertices determine the desired interior diagonal. From this, by induction,
it follows that any simple polygon on k vertices can be split into k − 2 triangles
whose vertices are the vertices of the original polygon and are, in particular, lattice
points. Therefore, the sum of all interior angles of a simple polygon on k vertices
is equal (k − 2)π.

Next, divide each of the resulting k−2 triangles into primitive triangles. Since the
area of each primitive triangle is 1/2, the number of primitive triangles in this case
is N = 2[P ] and therefore does not depend on the way the polygon was divided
into primitive triangles.

To finish the proof, we simply need to check that

N = 2Ni +Ne − 2.

We consider three cases as shown in Figure 7:

Figure 7

First of all, each vertex of P is also a vertex of one or more of our primitive triangles
(see Figure 7a). The sum of the angles of all the triangles at these vertices equals
to the sum of the interior angles of P and hence equals 180◦(k − 2).

Secondly, a lattice point which is not a vertex of P but lies on the boundary of P
also serves as a vertex of our primitive triangles (see Figure 7b), and the sum of
the angles at these vertices equals 180◦(Ne − k).

Finally, we have to consider each of the Ni lattice points on the interior of P which
also serve as vertices of our primitive triangles. The sum of the angles at these
vertices is 360◦ (see Figure 7c). therefore, the sum of the angles of all primitive
triangles with vertices on the interior lattice points equals 360◦Ni.

On the other hand, the sum of angles of all N of our primitive triangles is 180◦N ,
so we have

180◦N = 360◦Ni + 180◦(Ne − k) + 180◦(k − 2).

Therefore, N = 2Ni +Ne − 2 and the proof is complete. 2
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Remark. Of course, we can replace the vertical lines of our lattice by any family
of equally spaced parallel lines so that the square cells are replaced by congruent
parallelograms. Pick’s formula holds in this general case as well: For a lattice
polygon P , we have

[P ] =

Å
Ni +

Ne
2
− 1

ã
· [a],

where [a] is the area of each of the parallelograms. One can prove this claim
with an argument similar to the one above; alternatively, one can apply a linear
transformation to the cartesian lattice points by means of a 2 × 2 matrix whose
determinant is [a].

Let us summarize three proven statements:

1◦. For any simple lattice polygon P , we have Pick’s formula [P ] = Ni + Ne

2 − 1.

2◦. The area of any primitive lattice triangle is 1/2.

3◦. For any decomposition of a simple polygon into N primitive triangles, we have
that N = 2Ni +Ne − 2.

Let us consider logical connections between these statements and compare their
relative strengths.

Statement 2◦ is an immediate consequence of 1◦, whereas 3◦ follows from 1◦ and
2◦ (see Figure 8a). Therefore, we could get all three statements immediately if we
proved Pick’s formula first and without using 2◦ and 3◦ (see Exercise 3.) However,
we picked a different route: we proved 2◦ independently, then concluded 3◦ and
then finally got 1◦ as a corollary of 2◦ and 3◦ (see Figure 8b).

Figure 8

It is interesting to consider two other approaches, suggested by Figure 8c and 8d,
to proving the three statements. Let us show how 2◦ follows from 3◦. First note
that the area of any lattice triangle can be expressed as n/2 (for some integer n).
(To see this, use coordinates for the vertices of the triangle, or see R.W. Gaskell,
M.S. Klamkin, and P. Watson, “Triangulations and Pick’s Theorem”, Mathematics
Magazine, 49:1 (Jan. 1976) 35-37.) Now let T be a primitive triangle and P be
a p by q lattice rectangle (whose sides lie along the lattice lines) that encloses T .
Set T1 = T and use primitive triangles Tj , j = 2, . . . , N , to triangulate the region
(or regions) inside P lying outside of T (which are bounded by OACB and AFB
as in Figure 5d if the smallest rectangle is used for P ). The number of primitive
triangles required to cover P , according to 3◦, is

N = 2Ni +Nb − 2 = 2(p− 1)(q − 1) + 2p+ 2q − 2 = 2pq.
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Therefore, we have 2pq primitive triangles, each of area at least 1/2, whose com-
bined area equals

[P ] =

2pq∑
j=1

[Tj ] = pq.

Consequently, each of the 2pq triangles Tj must have area exactly 1/2 so that their
combined area does not exceed the area pq of the outer rectangle. Thus we see
that 3◦ implies 2◦.

We will now prove that 2◦ implies 1◦. Consider the function

F (P ) = Ni +
Ne
2
− 1,

defined on all simple lattice polygons. Split P into two lattice polygons P1 and
P2 using a broken line passing through lattice points (see Figure 9); we write
P = P1 + P2.

Figure 9

It is then easy to see that functions F and area are additive, that is

F (P1 + P2) = F (P1) + F (P2) and [P1 + P2] = [P1] + [P2].

Therefore, if Pick’s formula holds for P1 and P2, then it also holds for P = P1 +
P2. But since any simple polygon can be split into primitive triangles and by
assumption Pick’s formula holds for them, then it also holds for any given polygon.

To summarize, we have established that the three statements are equivalent even
though a priori, 1◦ might appear to be the strongest of the three.

Exercise 2. Using the additive property of the function F (P ) and the proof of
Theorem 1, find a proof of Pick’s formula that does not require 2◦ and 3◦.

To be continued.
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This article appeared in Russian in Kvant, 2008(2), p. 11–15. It has been trans-
lated and adapted with permission.
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