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1. INTRODUCTION

Let γ(1), . . . , γ(s) be the basis nodes of a full-rank lattice

Γ = {m1γ
(1) + · · · + msγ

(s) : m1, . . . ,ms ∈ Z} ⊂ R
s.

The lattice is always assumed to be “in general position,” namely, the coordinate hyperplanes contain
no nodes of the lattice except for the origin. (For the general case, see [1].) Denote by Gs the finite
group acting on GLs(R) and generated by the following elementary transformations: 1) change of signs
of the elements of a row or a column; 2) transposition of rows or columns. Two matrices are said
to be equivalent if one of them can be obtained from another by a transformation in Gs. Suppose
that {γ(1), γ(2)} is a basis of the two-dimensional lattice Γ for which there are no nonzero nodes
γ = (γ1, γ2) ∈ Γ such that

|γ1| < max{|γ(1)
1 |, |γ(2)

1 |}, |γ2| < max{|γ(1)
2 |, |γ(2)

2 |}.
Voronoi proved (see [2]) that this is possible if and only if

Φ

⎛
⎝γ

(1)
1 γ

(2)
1

γ
(1)
2 γ

(2)
2

⎞
⎠ =

⎛
⎝a1 −b1

a2 b2

⎞
⎠ , where 0 ≤ b1 ≤ a1, 0 ≤ a2 ≤ b2, .

for some transformation Φ ∈ G2. A basis of a lattice is said to be a Voronoi basis if the matrix
corresponding to this basis is equivalent to a matrix of the form

(
a1 −b1
a2 b2

)
. As was noted in [3], Vahlen’s

theorem concerning the approximation of numbers by convergents (see [4], [5]) has the following
interpretation in terms of lattices: for every Voronoi basis {γ(1), γ(2)},

min{|γ(1)
1 γ

(1)
2 |, |γ(2)

1 γ
(2)
2 |} ≤ 1

2
det Γ.

In the same paper, a refinement of Vahlen’s theorem was suggested,

|γ(1)
1 γ

(1)
2 | + |γ(2)

1 γ
(2)
2 | ≤ det Γ, (1)

which follows from the inequality

a1b2 + a2b1 − a1a2 − b1b2 = (a1 − b1)(b2 − a2) ≥ 0.

Avdeeva and Bykovskii [3] proved an analog of the inequality (1) for Minkowski bases (three-
dimensional analogs of the Voronoi bases). Below we present a short simpler proof of the Avdeeva–
Bykovskii theorem. Moreover, their result is extended to arbitrary minimal three-vector systems (for the
definitions, see below).
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2. MINIMAL SYSTEMS AND MINKOWSKI BASES

For a nonempty point set T ⊂ R
3, write

|T |i = max{|xi| : x = (x1, x2, x3) ∈ T}, i = 1, 2, 3,
Π(T ) = [−|T |1, |T |1] × [−|T |2, |T |2] × [−|T |3, |T |3].

Let Γ be a full-rank lattice in R
3. By a system of nodes of order t of the lattice Γ we mean an arbitrary

finite family of nonzero nodes of Γ of the form (γ(1), . . . , γ(t)), where γ(i) �= ±γ(j), 1 ≤ i < j ≤ t. A
system S of the lattice Γ is said to be minimal if there are no nonzero nodes γ ∈ Γ placed strictly inside
Π(S).

Minkowski proved [6], [7, Article 109] that every minimal system of three vectors (γ(1), γ(2), γ(3)) is
either degenerate (and then γ(1) ± γ(2) ± γ(3) = 0 for some combination of signs) or forms a basis of
the lattice (Minkowski basis). Using elementary transformations, one can reduce the matrix of every
Minkowski basis to one of the following canonical forms (see [6], [7], and also [8]–[10]):

⎛
⎜⎜⎜⎝

a1 b1 −c1

−a2 b2 c2

a3 −b3 c3

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

a1 b1 c1

−a2 b2 c2

a3 −b3 c3

⎞
⎟⎟⎟⎠ (2)

with nonnegative ai, bi, ci, i = 1, 2, 3, such that

1) max{b1, c1} ≤ a1, max{a2, c2} ≤ b2, max{a3, b3} ≤ c3;

2) at least one of the inequalities c1 ≤ b1, a2 ≤ c2, b3 ≤ c3 holds for the matrices of the first kind;

3) the inequality a2 + c2 ≥ b2 and at least one of the inequalities a3 ≤ b3, c1 ≤ b1 hold for the
matrices of the second kind.

Here, at the expense of redenoting the coordinates and the vectors, one can achieve the situation
in which the three (for matrices of the first kind) or two (for matrices of the second kind) alternative
inequalities are replaced by the single inequality c1 ≤ b1.

3. THREE-DIMENSIONAL VAHLEN THEOREM

For the above results related to the three-dimensional Vahlen’s theorem and also for some its
refinements, see [10]–[12].

Theorem 1 (Avdeeva, Bykovskii, 2006). Let the nodes γ(1), γ(2), γ(3) form a Minkowski basis of a
lattice Γ. Then

|γ(1)
1 γ

(1)
2 γ

(1)
3 | + |γ(2)

1 γ
(2)
2 γ

(2)
3 | + |γ(3)

1 γ
(3)
2 γ

(3)
3 | ≤ det Γ. (3)

Proof. For the matrix M whose columns are the vectors γ(1), γ(2), γ(3), we claim that Δ(M) ≥ 0, where

Δ(M) = det M − |γ(1)
1 γ

(1)
2 γ

(1)
3 | − |γ(2)

1 γ
(2)
2 γ

(2)
3 | − |γ(3)

1 γ
(3)
2 γ

(3)
3 |.

The quantity Δ(M) is preserved under the action of the transformations in the group G3. Therefore,
it suffices to establish the bound Δ(M) ≥ 0 for bases whose matrices are of the form (2) and satisfy the
inequality c1 ≤ b1 ≤ a1. Since b2c3 ≥ a2a3, it follows that the coefficient at a1 in the expansion (ε = −1
for the matrices of the first kind and ε = 1 for the matrices of the second kind)

Δ(M) = a1(b2c3 + c2b3 − a2a3) + b1(a2c3 + c2a3 − b2b3) + εc1(a2b3 − b2a3) − c1c2c3

is nonnegative, and therefore it suffices to prove the inequality Δ(M) ≥ 0 for a1 = b1. Then

Δ(M) = b1(b2(c3 − b3) + a2(c3 − a3) + c2(a3 + b3)) + εc1(a2b3 − b2a3) − c1c2c3,
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and the coefficient at b1 is nonnegative. Thus, it suffices to restrict ourselves to the case in which
a1 = b1 = c1. For the matrices of the first kind (ε = −1),

Δ(M) = c1(a3(b2 − a2) + a2(c3 − b3) + (b2 − c2)(c3 − b3) + a3c2) ≥ 0,

because all summands are nonnegative. For the matrices of the second kind (ε = 1),

Δ(M) = c1((b2 − c2)(c3 − a3) + a2(c3 − a3) + b3(a2 + c2 − b2)) ≥ 0,

because the additional condition a2 + c2 ≥ b2 holds.

4. GENERALIZATION OF THE THREE-DIMENSIONAL VAHLEN THEOREM

The result of Theorem 1 admits the following refinement.

Theorem 2. Inequality (3) holds for an any minimal system of three vectors γ(1), γ(2), γ(3).

Proof. With regard to Theorem 1, it is sufficient to carry out the proof for a degenerate minimal triple.
Suppose that (γ(1), γ(2), γ(3)) is a degenerate system of three vectors and their signs are chosen in such
a way that γ(1) + γ(2) + γ(3) = 0. Then the matrix of the degenerate minimal triple can be reduced by
elementary transformations to the form (see [7, Article 109])

⎛
⎜⎜⎜⎝

a1 −b1 −c1

−a2 b2 −c2

−a3 −b3 c3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b1 + c1 −b1 −c1

−a2 a2 + c2 −c2

−a3 −b3 a3 + b3

⎞
⎟⎟⎟⎠

with nonnegative ai, bi, ci, i = 1, 2, 3. The interior of the parallelepiped [−a1, a1] × [−b2, b2] × [−c3, c3]
contains no points of the lattice Γ that differ from the origin. By Minkowski’s theorem on convex bodies,
det Γ ≥ a1b2c3. Hence

|γ(1)
1 γ

(1)
2 γ

(1)
3 |+|γ(2)

1 γ
(2)
2 γ

(2)
3 |+|γ(3)

1 γ
(3)
2 γ

(3)
3 | = (b1 + c1)a2a3 + (a2 + c2)b1b3 + (a3 + b3)c1c2

≤ (b1 + c1)(a2 + c2)(a3 + b3) = a1b2c3 ≤ det Γ.
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6. H. Minkowski, Ann. Sci. École Norm. Sup. (3) 13, 41 (1896).
7. H. Hancock, Development of the Minkowski Geometry of Numbers, Vol. 1, 2 (Dover Publ., 1964).
8. O. A. Gorkusha, Mat. Zametki 69 (3), 353 (2001) [Math. Notes 69 (3–4), 320 (2001)].
9. V. A. Bykovskii and O. A. Gorkusha, Mat. Sb. 192 (2), 57 (2001) [Sb. Math. 192 (1–2), 215–223 (2001)].

10. M. O. Avdeeva and V. A. Bykovskii, Mat. Sb. 194 (7), 3 (2003) [Sb. Math. 194 (7–8), 955 (2003)].
11. V. A. Bykovskii, Mat. Zametki 66 (1), 30 (1999) [Math. Notes 66 (1–2), 24 (1999) (2000)].
12. S. V. Gassan, Chebyshevskii Sb. 6 (3), 51 (2005) [in Russian].

MATHEMATICAL NOTES Vol. 95 No. 1 2014


